【題目】如圖,平面直角坐標系中,長方形OABC,點AC分別在x軸,y軸的正半軸上,點B63),現(xiàn)將OAB沿OB翻折至OAB位置,OABC于點P.則點P的坐標為( 。

A.,3B.,3C.3D.

【答案】A

【解析】

由折疊的性質(zhì)和矩形的性質(zhì)證出OP=BP,設OP=BP=x,則PC=6x,再用勾股定理建立方程9+6x2=x2,求出x即可.

∵將OAB沿OB翻折至OAB位置,OABC于點P

∴∠A'OB=AOB

∵四邊形OABC是矩形,

BCOA,

∴∠OBC=AOB,

∴∠OBC=A'OB

OP=BP,

∵點B的坐標為(63),

AB=OC=3,OA=BC=6,

OP=BP=x,則PC=6x,

RtOCP中,根據(jù)勾股定理得,OC2+PC2=OP2,

32+6x2=x2,

解得:x=

PC=6=,

P,3),

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一斜坡坡頂處的同一水平線上有一古塔,為測量塔高,數(shù)學老師帶領(lǐng)同學在坡腳處測得斜坡的坡角為,且,塔頂處的仰角為,他們沿著斜坡攀行了米,到達坡頂處,在處測得塔頂的仰角為

(1)求斜坡的高度;

(2)求塔高

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩同心圓中,大圓的弦交小圓于、兩點,點的距離等于的一半,且.則大小圓的半徑之比為( )

A. :1 B. 2: C. 10: D. 3:1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了方便孩子入學,小王家購買了一套學區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計劃每月還款y萬元,x個月還清貸款,若yx的反比例函數(shù),其圖象如圖所示:

(1)求yx的函數(shù)解析式;

(2)若小王家計劃180個月(15年)還清貸款,則每月應還款多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,A(-1,0)、B(0,-2),頂點C、D在雙曲線(x>0)上,邊ADy軸于點E,若點E恰好是AD的中點,則k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=(12mx+m+1及坐標平面內(nèi)一點P2,0);

1)若一次函數(shù)圖象經(jīng)過點P2,0),求m的值;

2)若一次函數(shù)的圖象經(jīng)過第一、二、三象限;

①求m的取值范圍;

②若點Ma1,y1),Na,y2),在該一次函數(shù)的圖象上,則y1   y2(填、、).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,,,平分,相交于點,則的長等于_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為12 DAB邊上一動點,過點DDE⊥BC于點E.過點EEF⊥AC于點F
(1)AD=2,求AF的長;
(2)AD取何值時,DE=EF?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(3,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤3.其中正確的是(  )

A. ①② B. ②③ C. ①④ D. ③④

查看答案和解析>>

同步練習冊答案