【題目】如圖,兩同心圓中,大圓的弦交小圓于、兩點(diǎn),點(diǎn)的距離等于的一半,且.則大小圓的半徑之比為( )

A. :1 B. 2: C. 10: D. 3:1

【答案】A

【解析】

過(guò)OOE⊥AB,交AB于點(diǎn)E,連接OA,OC,如圖所示,由垂徑定理得到EAB的中點(diǎn),ECD的中點(diǎn),又AB的弦心距等于CD的一半,即OE=CE=ED=CD,可得出三角形COE為等腰直角三角形,設(shè)CE=OE=x,利用勾股定理表示出OC,再由AC=CD,表示出AC,由AC+CE表示出AE,在直角三角形AOE中,利用勾股定理表示出OA,即可求出兩半徑之比.

解:過(guò)OOE⊥AB,交AB于點(diǎn)E,連接OA,OC,如圖所示,

由垂徑定理得到EAB的中點(diǎn),ECD的中點(diǎn),

∵AB的弦心距等于CD的一半,即OE=CE=ED=CD,

∴△OCE為等腰直角三角形,

設(shè)CE=OE=x,由勾股定理得到OC=x,

∵AC=CD=2CE,得到AC=2x,

∴AE=AC+CE=2x+x=3x,

Rt△AEO中,根據(jù)勾股定理得:OA==x,

則這兩個(gè)同心圓的大小圓的半徑之比OA:OC=x:x=:1.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:

(1)商場(chǎng)日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)、兩種機(jī)械設(shè)備,每臺(tái)種設(shè)備的成本是種設(shè)備的1.5倍,公司若投入16萬(wàn)元生產(chǎn)種設(shè)備,36萬(wàn)元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺(tái),請(qǐng)解答下列問(wèn)題:

1、兩種設(shè)備每臺(tái)的成本分別是多少萬(wàn)元?

2、兩種設(shè)備每臺(tái)的售價(jià)分別是6萬(wàn)元、10萬(wàn)元,且該公司生產(chǎn)兩種設(shè)備各30臺(tái),現(xiàn)公司決定對(duì)兩種設(shè)備優(yōu)惠出售,種設(shè)備按原來(lái)售價(jià)8折出售,B種設(shè)備在原來(lái)售價(jià)的基礎(chǔ)上優(yōu)惠10%,若設(shè)備全部售出,該公司一共獲利多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為,另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)

(1)m的值及C點(diǎn)坐標(biāo);

(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與BC兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由

(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q,當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo)(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(shí)(從甲車出發(fā)時(shí)開(kāi)始計(jì)時(shí)),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖像線段AB表示甲出發(fā)不足2小時(shí)因故停車檢修),請(qǐng)根據(jù)圖像所提供的信息,解決如下問(wèn)題:

(1)求乙車所行路程y與時(shí)間x的函數(shù)關(guān)系式;

(2)求兩車在途中第二次相遇時(shí),它們距出發(fā)地的路程;

(3)乙車出發(fā)多長(zhǎng)時(shí)間,兩車在途中第一次相遇?(寫出解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.

1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC54°,則∠DAE的度數(shù)為  °

2)如圖2,若點(diǎn)F落在邊BC上,且AB6,AD10,求CE的長(zhǎng).

3)如圖3,若點(diǎn)ECD的中點(diǎn),AF的沿長(zhǎng)線交BC于點(diǎn)G,且AB6AD10,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,的外接圓,且,,的切線,為切點(diǎn),割線過(guò)圓心,交于另一點(diǎn),連接

求證:

的半徑及的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,長(zhǎng)方形OABC,點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)B6,3),現(xiàn)將OAB沿OB翻折至OAB位置,OABC于點(diǎn)P.則點(diǎn)P的坐標(biāo)為(  )

A.,3B.,3C.,3D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大拇指與小拇指盡量張開(kāi)時(shí),兩指尖的距離稱為指距.人體構(gòu)造學(xué)的研究成果表明,一般情況下人的指距和身高成如下所示的關(guān)系.

1)直接寫出身高與指距的函數(shù)關(guān)系式:    .

2)姚明的身高是226厘米,可預(yù)測(cè)他的指距約為多少?(精確到0.1厘米)

查看答案和解析>>

同步練習(xí)冊(cè)答案