【題目】若關(guān)于x的方程x2-3x+m2-2=0有一個根為1,則m的值為______

【答案】±2

【解析】根據(jù)一元二次方程的根的定義,方程的根就是能使方程的左右兩邊相等的未知數(shù)的值,因而把x=1代入方程就得到一個關(guān)于m的方程,就可以求出m的值.

根據(jù)題意將x=1代入方程,得:1-3+m2-2=0,

解得x=±2

故答案為:±2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖:作一個角等于已知角

已知:∠AOB,

求作:∠A′OB′,使:∠A′OB′=AOB

小易同學(xué)作法如下:

①作射線O′A′;

②以點O為圓心,以任意長為半徑作弧,交OAC,交OBD;

③以點O′為圓心,以OC長為半徑作弧,交O′AC

④以點C′圓心,以CD為半徑作弧,交③中所畫弧于D′;

⑤經(jīng)過點D′作射線O′B′,A′O′B′就是所求的角.

老師說:小易的作法正確

請回答:小易的作圖依據(jù)是______________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A(0,4)、B(3,0),連接AB,將△AOB沿過點B的直線折疊,使點A落在x軸上的點A′處,折痕所在的直線交y軸正半軸于點C,則直線BC的解析式為( 。

A. y=﹣x+ B. y=﹣x+ C. y=﹣x+ D. y=﹣2x+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在第37屆中國洛陽文化節(jié)期間,某手工刺繡服裝店老板某天銷售了10件同款的女裝上衣,銷售尺碼統(tǒng)計如下表:

尺碼/cm

155

160

165

170

175

銷量/

1

4

2

2

1

則這10件上衣尺碼的平均數(shù)和眾數(shù)分別為( 。

A.160164B.160,4C.164,160D.164,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用總長為6米的鋁合金做成一個如圖所示的“日”字型窗框,設(shè)窗框的高度為x米,窗的透光面積(鋁合金所占面積忽略不計)為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(結(jié)果要化成一般形式);
(2)能否使窗的透光面積達到2平方米,如果能,窗的高度和寬度各是多少?如果不能,試說明理由;
(3)窗的高度為多少時,能使透光面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離,即|x|=|x﹣0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;這個結(jié)論可以推廣為:|x﹣y|表示在數(shù)軸上數(shù)x、y對應(yīng)點之間的距離;在解題中,我們常常運用絕對值的幾何意義.

①解方程|x|=2,容易看出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的解為x=±2.

②在方程|x﹣1|=2中,x的值就是數(shù)軸上到1的距離為2的點對應(yīng)的數(shù),顯然x=3x=﹣1.

③在方程|x﹣1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和﹣2的距離之和為5 的點對應(yīng)的x值,在數(shù)軸上1和﹣2的距離為3,滿足方程的x的對應(yīng)點在1的右邊或﹣2的左邊.若x的對應(yīng)點在1的右邊,由圖示可知,x=2;同理,若x的對應(yīng)點在﹣2的左邊,可得x=﹣3,所以原方程的解是x=2x=﹣3.根據(jù)上面的閱讀材料,解答下列問題:

(1)方程|x|=5的解是_______________.

(2)方程|x﹣2|=3的解是_________________.

(3)畫出圖示,解方程|x﹣3|+|x+2|=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個等腰三角形的兩邊長分別為59,則這個三角形的周長是(  )

A. 19 B. 23 C. 1923 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】選擇適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)2(x﹣3)=3x(x﹣3).
(2)2x2﹣3x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明∠A>60°時,應(yīng)先假設(shè)_____

查看答案和解析>>

同步練習(xí)冊答案