【題目】設(shè)二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當(dāng)a=2時,試判斷點(--5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過點(1,-4),求該函數(shù)的表達式.

3)當(dāng)-1≤x+1時,yx的增大而減小,求a的取值范圍.

【答案】1)點不在該函數(shù)圖象上;(2;(3

【解析】

1)將a=2代入y=ax-1)(x-a),寫出解析式,然后計算時,y的取值,判斷即可;

2)將(1,-4)代入y=ax-1)(x-a)解出a的值即可;

3)先求出拋物線的對稱軸,然后根據(jù)增減性分情況討論即可.

1)∵

當(dāng)時,

∴點不在該函數(shù)圖象上

2)∵函數(shù)的圖象經(jīng)過點

解得,

∴所求函數(shù)表達式為

3)∵二次函數(shù)的圖象與軸交于點

∴函數(shù)圖象的對稱軸為直線

當(dāng)時,函數(shù)圖象開口向上

∵當(dāng)時,的增大而減小

當(dāng)時,函數(shù)圖象開口向下

∵當(dāng)時,的增大而減小

綜上所述,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,先有一張矩形紙片分別在矩形的邊上,將矩形紙片沿直線MN折疊,使點落在矩形的邊上,記為點,點落在處,連接,交于點,連接.下列結(jié)論:

②四邊形是菱形;

重合時,

的面積的取值范圍是

其中正確的是_____(把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,頂點,點是對角線上的一個動點,,,點是對角線上的一個動點,,當(dāng)最短時,點的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示圖案是我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為趙爽弦圖.已知AE4,BE3,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點的機會均等),則恰好落在正方形EFGH內(nèi)的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD中,EBC邊上一點,連接AE,作AE的垂直平分線交ABG,交CDF,若BG2BE,則DFCF的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《N家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:九年級男生坐位體前屈達到17.8厘米及以上為優(yōu)秀;達到13.8厘米至17.7厘米為良好;達到-0.2厘米至13.7厘米為及格;達到-0.3厘米及以下為不及格,某校為了了解九年級男生的身體柔韌性情況,從該校九年級男生中隨機抽取了20%的學(xué)生進行坐位體前屈測試,并把測試結(jié)果繪制成如圖所示的統(tǒng)計表和扇形統(tǒng)計圖(部分信息不完整),請根據(jù)所給信息解答下列問題.

某校九年級若干男生坐位體前屈成績統(tǒng)計表

成績(厘米)

等級

人數(shù)

17.8

優(yōu)秀

13.8~17.7

良好

0.2~13.7

及格

15

-0.3

不及格

1)求參加本次坐位體前屈測試的人數(shù);

2)求a,bc的值;

3)試估計該年級男生中坐位體前屈成績不低于13.8厘米的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BOC140°,I是內(nèi)心,O是外心,則∠BIC等于(

A.130°B.125°C.120°D.115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對二次函數(shù)yx2+2mx+1,當(dāng)0x≤4時函數(shù)值總是非負數(shù),則實數(shù)m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,點C、E是⊙O上的兩點,CE=CB,,延長AE交BC的延長線于點F.

(1)求證:CD是⊙O的切線;

(2)求證:CE=CF

(3)若BD=1,,求直徑AB的長.

查看答案和解析>>

同步練習(xí)冊答案