【題目】如圖,在中,AD是BC邊上的高,。
(1)求證:AC=BD
(2)若,求AD的長。
【答案】(1)證明見解析;(2)8
【解析】
(1)由于tanB=cos∠DAC,所以根據(jù)正切和余弦的概念證明AC=BD;
(2)設(shè)AD=12k,AC=13k,然后利用題目已知條件即可解直角三角形.
(1)證明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=,cos∠DAC=,
又∵tanB=cos∠DAC,
∴=,
∴AC=BD;
(2)在Rt△ADC中,sinC=,
故可設(shè)AD=12k,AC=13k,
∴CD==5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k,
由已知BC=12,
∴18k=12,
∴k=,
∴AD=12k=12×=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=4cm,F是弦BC的中點(diǎn),∠ABC=60°.若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著A→B→A的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t<6),連接EF,當(dāng)△BEF是直角三角形時(shí),t的值為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)為,請(qǐng)解答下列問題:
(1)畫出關(guān)于軸對(duì)稱的,點(diǎn)的坐標(biāo)為______;
(2)在網(wǎng)格內(nèi)以點(diǎn)為位似中心,把按相似比放大,得到,請(qǐng)畫出;若邊上任意一點(diǎn)的坐標(biāo)為,則兩次變換后對(duì)應(yīng)點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)平面圖如圖1所示,為邊界上的點(diǎn).已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點(diǎn)到的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.
求邊界所在拋物線的解析式;
如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個(gè)矩形場(chǎng)地,使得點(diǎn)在邊界上,點(diǎn)在邊界上,試確定點(diǎn)的位置,使得矩形的周長最大,并求出最大周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點(diǎn)F,G,則下列結(jié)論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有( ).
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AE⊥BD于點(diǎn)E,點(diǎn)P是邊AD上一點(diǎn).
(1)若BP平分∠ABD,交AE于點(diǎn)G,PF⊥BD于點(diǎn)F,如圖①,證明四邊形AGFP是菱形;
(2)若PE⊥EC,如圖②,求證:AEAB=DEAP;
(3)在(2)的條件下,若AB=1,BC=2,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)P在直線y=﹣x上運(yùn)動(dòng),∠PAB=90°,∠APB=30°,在點(diǎn)P運(yùn)動(dòng)的過程中OB的最小值為( )
A.3.5B.2C.D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com