【題目】河南省開封市鐵塔始建于公元1049年(北宋皇祐元年),是國家重點保護文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側(cè)的水平面上一個臺階的底部A處測得塔頂P的仰角為45°,走到臺階頂部B處,又測得塔頂P的仰角為38.7°,已知臺階的總高度BC為3米,總長度AC為10米,試求鐵塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)
科目:初中數(shù)學 來源: 題型:
【題目】榴蓮上市的時候,某水果行以“線上”與“線下”相結(jié)合的方式一共銷售了箱榴蓮.已知“線上”銷售的每箱利潤為元.“線下”銷售的每箱利潤(元)與銷售量(箱)之間的函數(shù)關系如圖中的線段.
(1)求與之間的函數(shù)關系.
(2)當“線下”的銷售利潤為元時,求的值.
(3)實際“線下”銷售時,每箱還要支出其它費用元,若“線上”與“線下”售完這箱榴蓮所獲得的最大總利潤為元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx﹣5與x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別相交于點F,G,試探究當點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標;
(3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).
根據(jù)上述信息,解答下列各題:
×
(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;
(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關注指數(shù)”.如果該班級男生對“兩會”新聞的“關注指數(shù)”比女生低,試求該班級男生人數(shù);
(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).
統(tǒng)計量 | 平均數(shù)(次) | 中位數(shù)(次) | 眾數(shù)(次) | 方差 | … |
該班級男生 | … |
根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,直線l經(jīng)過點A,且垂直于AB,分別與AB、AC相交于點M,N.直線l從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,當直線l經(jīng)過點B時停止運動,若運動過程中△AMN的面積是y(cm2),直線l的運動時間是x(s)則y與x之間函數(shù)關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么sin∠EFC的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設甲乙兩人相距(米),甲行走的時間為(分),關于的函數(shù)函數(shù)圖像的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標系中,補畫關于函數(shù)圖象的其余部分;
(3)問甲、乙兩人何時相距360米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AO⊥OM,垂足為點O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BC′D′的位置(如圖3所示),此時C′D′⊥OM,AD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,AB=AC,D點為Rt△ABC外一點,且BD⊥CD,DF為∠BDA的平分線,當∠ACD=15°,下列結(jié)論:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正確的是( )
A.①③B.①②④C.①③④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com