【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線yax2+bx5x軸交于A(﹣10),B5,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的函數(shù)表達(dá)式;

2)如圖2,CEx軸與拋物線相交于點(diǎn)E,點(diǎn)H是直線CE下方拋物線上的動點(diǎn),過點(diǎn)H且與y軸平行的直線與BC,CE分別相交于點(diǎn)F,G,試探究當(dāng)點(diǎn)H運(yùn)動到何處時(shí),四邊形CHEF的面積最大,求點(diǎn)H的坐標(biāo);

3)若點(diǎn)K為拋物線的頂點(diǎn),點(diǎn)M4,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQKM的周長最小,求出點(diǎn)PQ的坐標(biāo).

【答案】1yx24x5;(2H,﹣);(3P,0),Q0,﹣

【解析】

1)根據(jù)待定系數(shù)法直接確定出拋物線解析式;

2)先求出直線BC的解析式,進(jìn)而求出四邊形CHEF的面積的函數(shù)關(guān)系式,即可求出;

3)利用對稱性找出點(diǎn)P,Q的位置,進(jìn)而求出P,Q的坐標(biāo).

1)∵點(diǎn)A(﹣1,0),B5,0)在拋物線yax2+bx5上,

,

解得

∴拋物線的表達(dá)式為yx24x5,

2)設(shè)Htt24t5),

CEx軸,

∴點(diǎn)E的縱坐標(biāo)為﹣5,

E在拋物線上,

x24x5=﹣5,

x0(舍)或x4,

E4,﹣5),

CE4

B5,0),C0,﹣5),

∴直線BC的解析式為yx5

Ft,t5),

HFt5﹣(t24t5)=﹣(t2+,

CEx軸,HFy軸,

CEHF,

S四邊形CHEFCEHF=﹣2t2+

H,﹣);

3)如圖2,

K為拋物線的頂點(diǎn),

K2,﹣9),

K關(guān)于y軸的對稱點(diǎn)K'(﹣2,﹣9),

M4,m)在拋物線上,

M4,﹣5),

∴點(diǎn)M關(guān)于x軸的對稱點(diǎn)M'45),

∴直線K'M'的解析式為y,

P,0),Q0,﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書香八桂,閱讀圓夢讀書活動中,某中學(xué)設(shè)置了書法、國學(xué)誦讀、演講、征文四個(gè)比賽項(xiàng)目(每人只參加一個(gè)項(xiàng)目),九(2)班全班同學(xué)都參加了比賽,該班班長為了了解本班同學(xué)參加各項(xiàng)比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線統(tǒng)計(jì)圖(圖1)和扇形統(tǒng)計(jì)圖(圖2),根據(jù)圖表中的信息解答下列各題:

1)請求出九(2)全班人數(shù);

2)請把折線統(tǒng)計(jì)圖補(bǔ)充完整;

3)南南和寧寧參加了比賽,請用列表法畫樹狀圖法求出他們參加的比賽項(xiàng)目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作O,交BD于點(diǎn)E,連接CE,過D作DFAB于點(diǎn)F,BCD=2ABD.

1求證:AB是O的切線;

2A=60°,DF=,求O的直徑BC的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工廠需加工生產(chǎn) 550 臺某種機(jī)器,已知甲工廠每天加工生產(chǎn)的機(jī)器臺數(shù)是乙工廠每天加工 生產(chǎn)的機(jī)器臺數(shù)的 1.5 倍,并且加工生產(chǎn) 240 臺這種機(jī)器甲工廠需要的時(shí)間比乙工廠需要的時(shí)間少 4

1)求甲、乙兩個(gè)工廠每天分別可以加工生產(chǎn)多少臺這種機(jī)器?

2)若甲工廠每天加工的生產(chǎn)成本是 3 萬元,乙工廠每天加工生產(chǎn)的成本是 2.4 萬元,要使得加工生 產(chǎn)這批機(jī)器的總成本不得高于 60 萬元,至少應(yīng)該安排甲工廠生產(chǎn)多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極參與鄂州市全國文明城市創(chuàng)建活動,我市某校在教學(xué)樓頂部新建了一塊大型宣傳牌,如下圖.小明同學(xué)為測量宣傳牌的高度,他站在距離教學(xué)樓底部6米遠(yuǎn)的地面處,測得宣傳牌的底部的仰角為,同時(shí)測得教學(xué)樓窗戶處的仰角為(、、、在同一直線上).然后,小明沿坡度的斜坡從走到處,此時(shí)正好與地面平行.

(1)求點(diǎn)到直線的距離(結(jié)果保留根號);

(2)若小明在處又測得宣傳牌頂部的仰角為,求宣傳牌的高度(結(jié)果精確到0.1米,,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn) 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以BC的中點(diǎn)O為圓心的分別與AB,AC相切于DE兩點(diǎn),則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省開封市鐵塔始建于公元1049年(北宋皇祐元年),是國家重點(diǎn)保護(hù)文物之一,在900多年中,歷經(jīng)了數(shù)次地震、大風(fēng)、水患而巍然屹立,素有“天下第一塔”之稱.如圖,小明在鐵塔一側(cè)的水平面上一個(gè)臺階的底部A處測得塔頂P的仰角為45°,走到臺階頂部B處,又測得塔頂P的仰角為38.7°,已知臺階的總高度BC3米,總長度AC10米,試求鐵塔的高度.(結(jié)果精確到1米,參考數(shù)據(jù):sin38.7°≈0.63,cos38.7°≈0.78tan38.7°≈0.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣3,0),C(2,0),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一定角度后使A落在y軸上,與此同時(shí)頂點(diǎn)C恰好落在y=的圖象上,則k的值為__

查看答案和解析>>

同步練習(xí)冊答案