【題目】(1)問題發(fā)現(xiàn)

如圖1,ACBDCE均為等腰直角三角形,ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為 .

(2)拓展探究

如圖2,ACBDCE均為等腰直角三角形,ACB=DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題

如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.

【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-3≤PC≤5+3

【解析】

1)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCESAS),得AD=BE,∠EBC=CAD,延長(zhǎng)BEAD于點(diǎn)F,由垂直定義得ADBE

2)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCESAS),AD=BE,∠CAD=CBE,由垂直定義得∠OHB=90°ADBE;

3)作AEAP,使得AE=PA,則易證△APE≌△ACP,PC=BE,當(dāng)P、E、B共線時(shí),BE最小,最小值=PB-PE;當(dāng)PE、B共線時(shí),BE最大,最大值=PB+PE,故5-3≤BE≤5+3.

1)結(jié)論:AD=BE,ADBE

理由:如圖1中,

∵△ACB與△DCE均為等腰直角三角形,

AC=BC,CE=CD,

ACB=ACD=90°

RtACDRtBCE

∴△ACD≌△BCESAS),

AD=BE,∠EBC=CAD

延長(zhǎng)BEAD于點(diǎn)F,

BCAD,

∴∠EBC+CEB=90°,

∵∠CEB=AEF,

∴∠EAD+AEF=90°

∴∠AFE=90°,即ADBE

AD=BE,ADBE

故答案為AD=BE,ADBE

2)結(jié)論:AD=BEADBE

理由:如圖2中,設(shè)ADBEH,ADBCO

∵△ACB與△DCE均為等腰直角三角形,

AC=BCCE=CD,∠ACB=ECD=90°,

ACD=BCE,

RtACDRtBCE
,

∴△ACD≌△BCESAS),

AD=BE,∠CAD=CBE,

∵∠CAO+AOC=90°,∠AOC=BOH,

∴∠BOH+OBH=90°,

∴∠OHB=90°,

ADBE,

AD=BE,ADBE

3)如圖3中,作AEAP,使得AE=PA,則易證△APE≌△ACP,

PC=BE

3-1中,當(dāng)P、E、B共線時(shí),BE最小,最小值=PB-PE=5-3,

3-2中,當(dāng)P、EB共線時(shí),BE最大,最大值=PB+PE=5+3,

5-3≤BE≤5+3

5-3≤PC≤5+3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),(k為常數(shù),k≠1).

(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;

(2)若在這個(gè)函數(shù)圖象的每一分支上,yx的增大而增大,求k的取值范圍;

(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動(dòng).全校學(xué)生從學(xué)校同時(shí)出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動(dòng)的準(zhǔn)備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱民族舞蹈等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,,,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形AOBC中,對(duì)角線交于點(diǎn)E,雙曲線y=(k>0)經(jīng)過A、E兩點(diǎn),若平行四邊形AOBC的面積為24,則k的值是( 。

A. 8B. 7.5C. 6D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下敘述中,其中正確的有_________(請(qǐng)寫出所有正確敘述的序號(hào))

1)若等腰三角形的一個(gè)外角為,則它的底角為

2)“趙爽弦圖”是由于四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示)。小亮同學(xué)隨機(jī)地在大正方形及其內(nèi)部區(qū)域投針,若直角三角形的兩條直角邊的長(zhǎng)分別是21,則針扎到小正方形(陰影)區(qū)域的概率是

3)已知關(guān)于的方程的解是正數(shù),則;

4)已知正比例函數(shù)反比例函數(shù)構(gòu)造一個(gè)新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).則它有下列一些性質(zhì): ①該函數(shù)的圖象是中心對(duì)稱圖形;②當(dāng)時(shí),該函數(shù)在時(shí)取得最大值-2;③的值不可能為1;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,矩形ABOC的邊BOx軸的負(fù)半軸上,邊OCy軸的正半軸上,且AB=1OB=,矩形ABOC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)60°后得到矩形EFOD.點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過點(diǎn)A,ED

1)判斷點(diǎn)E是否在y軸上,并說明理由;

2)求拋物線的函數(shù)表達(dá)式;

3)在x軸的上方是否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)OB,P,Q為頂點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織全校1500名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動(dòng),為了解本次系列活動(dòng)的效果,學(xué)校團(tuán)委在活動(dòng)開展一個(gè)月之后,隨機(jī)抽取部分學(xué)生調(diào)查了“一周詩詞誦背數(shù)量”,并根據(jù)調(diào)查結(jié)果繪制成如下的統(tǒng)計(jì)圖1和圖2.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

I.圖2中的值為__________;

Ⅱ.求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

Ⅲ.估計(jì)此時(shí)該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC10,tanA2,BEAC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

同步練習(xí)冊(cè)答案