【題目】如圖,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉(zhuǎn)得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是_____.
【答案】23°
【解析】
由矩形的性質(zhì)得出∠BCD=90°,AB∥CD,AD∥BC,證出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性質(zhì)得出∠ACF=2∠FEA,設∠ECD=x,則∠ACF=2x,∠ACD=3x,由互余兩角關(guān)系得出方程,解方程即可.
解:∵四邊形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
設∠ECD=x,則∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°;
故答案為:23°.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解全校1500名學生對學校設置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內(nèi)隨機抽查部分學生,對他們喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.
(1)m= %,這次共抽取了 名學生進行調(diào)查;并補全條形圖;
(2)請你估計該校約有 名學生喜愛打籃球;
(3)現(xiàn)學校準備從喜歡跳繩活動的4人(三男一女)中隨機選取2人進行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,點的坐標為.拋物線經(jīng)過、兩點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一點,過點作垂直軸于點,交線段于點,使最大.
①求點的坐標和的最大值.
②在直線上是否存在點,使點在以為直徑的圓上;若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是半圓O的直徑,M,N是半圓上不與A,B重合的兩點,且點N在上.
(1)如圖1,MA=6,MB=8,∠NOB=60°,求NB的長;
(2)如圖2,過點M作MC⊥AB于點C,P是MN的中點,連接MB,NA,PC,試探究∠MCP,∠NAB,∠MBA之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時,滿足的折射定律如圖①所示:折射率(代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設計了圖②所示的實驗;通過細管可以看見水底的物塊,但從細管穿過的直鐵絲,卻碰不上物塊,圖③是實驗的示意圖,點A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(3分)如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.
(1)求證:△DAC∽△EBC;
(2)求△ABC與△DEC的面積比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com