【題目】為了了解全校1500名學(xué)生對學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內(nèi)隨機抽查部分學(xué)生,對他們喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.
(1)m= %,這次共抽取了 名學(xué)生進行調(diào)查;并補全條形圖;
(2)請你估計該校約有 名學(xué)生喜愛打籃球;
(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(三男一女)中隨機選取2人進行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學(xué)生的概率是多少?
【答案】(1)20;50;(2)360;(3).
【解析】
試題分析:(1)首先由條形圖與扇形圖可求得m=100%-14%-8%-24%-34%=20%;由跳繩的人數(shù)有4人,占的百分比為8%,可得總?cè)藬?shù)4÷8%=50;
(2)由1500×24%=360,即可求得該校約有360名學(xué)生喜愛打籃球;
(3)首先根據(jù)題意畫出表格,然后由表格即可求得所有等可能的結(jié)果與抽到一男一女學(xué)生的情況,再利用概率公式即可求得答案.
試題解析:(1)m=100%-14%-8%-24%-34%=20%;
∵跳繩的人數(shù)有4人,占的百分比為8%,
∴4÷8%=50;
如圖所示;50×20%=10(人).
(2)1500×24%=360;
(3)列表如下:
男1 | 男2 | 男3 | 女 | |
男1 | 男2,男1 | 男3,男1 | 女,男1 | |
男2 | 男1,男2 | 男3,男2 | 女,男2 | |
男3 | 男1,男3 | 男2,男3 | 女,男3 | |
女 | 男1,女 | 男2,女 | 男3,女 |
∵所有可能出現(xiàn)的結(jié)果共12種情況,并且每種情況出現(xiàn)的可能性相等.其中一男一女的情況有6種.
∴抽到一男一女的概率P=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,沿CD折疊,使點B落在CA邊上的B′處,展開后,再沿BE折疊,使點C落在BA邊上的C′處,CD與BE交于點F.
(1)求AC′的長度;
(2)求CE的長度;
(3)比較四邊形EC′DF與△BCF面積的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)如圖,拋物線的對稱軸是.且過點(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正確的結(jié)論是 .(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,“復(fù)興一號“水稻的實驗田是邊長為m米的正方形去掉一個邊長為n米(m>n)正方形蓄水池后余下的部分,“復(fù)興二號“水稻的試驗田是邊長為(m-n)米的正方形,兩塊試驗田的水稻都收獲了a千克.
(1)哪種水稻的單位面積產(chǎn)量高?為什么?
(2)高的單位面積產(chǎn)量比低的單位面積產(chǎn)量高多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點,交x軸于點C.
(1)求m、n的值;
(2)請直接寫出不等式kx+b<的解集;
(3)將x軸下方的圖像沿x軸翻折,點B落在點B′處,連接AB′、B′C,求△A B′C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式的化簡后,遇到了這樣一個需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明繼續(xù)深入探索;當(dāng)a+b=(m+n)2時(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時,a=m2+2n2,b=2mn,于是,=m+n.請你仿照小明的方法探索并解決下列問題:
(1)設(shè)a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時,結(jié)果是a= ,b= ;
(2)利用(1)中的結(jié)論,選擇一組正整數(shù)填空:= + ;
(3)化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)是,點的坐標(biāo)是,把線段繞點逆時針旋轉(zhuǎn)90°后得到線段,則點的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3的對稱軸是直線x=1.
(1)求證:2a+b=0;
(2)若關(guān)于x的方程ax2+bx﹣8=0的一個根為4,求方程的另一個根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com