【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= , PD= .
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長(zhǎng).
【答案】
(1)8﹣2t; t
(2)解:不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴ ,即 ,
∴AD= t,
∴BD=AB﹣AD=10﹣ t,
∵BQ∥DP,
∴當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,
即8﹣2t= ,解得:t= .
當(dāng)t= 時(shí),PD= = ,BD=10﹣ × =6,
∴DP≠BD,
∴PDBQ不能為菱形.
設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長(zhǎng)度,
則BQ=8﹣vt,PD= t,BD=10﹣ t,
要使四邊形PDBQ為菱形,則PD=BD=BQ,
當(dāng)PD=BD時(shí),即 t=10﹣ t,解得:t=
當(dāng)PD=BQ,t= 時(shí),即 =8﹣ ,解得:v=
當(dāng)點(diǎn)Q的速度為每秒 個(gè)單位長(zhǎng)度時(shí),經(jīng)過 秒,四邊形PDBQ是菱形
(3)解:如圖2,以C為原點(diǎn),以AC所在的直線為x軸,建立平面直角坐標(biāo)系.
依題意,可知0≤t≤4,當(dāng)t=0時(shí),點(diǎn)M1的坐標(biāo)為(3,0),當(dāng)t=4時(shí)點(diǎn)M2的坐標(biāo)為(1,4).
設(shè)直線M1M2的解析式為y=kx+b,
∴ ,
解得 ,
∴直線M1M2的解析式為y=﹣2x+6.
∵點(diǎn)Q(0,2t),P(6﹣t,0)
∴在運(yùn)動(dòng)過程中,線段PQ中點(diǎn)M3的坐標(biāo)( ,t).
把x= 代入y=﹣2x+6得y=﹣2× +6=t,
∴點(diǎn)M3在直線M1M2上.
過點(diǎn)M2作M2N⊥x軸于點(diǎn)N,則M2N=4,M1N=2.
∴M1M2=2
∴線段PQ中點(diǎn)M所經(jīng)過的路徑長(zhǎng)為2 單位長(zhǎng)度
【解析】解:(1)根據(jù)題意得:CQ=2t,PA=t, ∴QB=8﹣2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA= = ,
∴PD= t.
故答案為:(1)8﹣2t, t.
(1)根據(jù)題意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA= = ,則可求得QB與PD的值;(2)易得△APD∽△ACB,即可求得AD與BD的長(zhǎng),由BQ∥DP,可得當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,即可求得此時(shí)DP與BD的長(zhǎng),由DP≠BD,可判定PDBQ不能為菱形;然后設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長(zhǎng)度,由要使四邊形PDBQ為菱形,則PD=BD=BQ,列方程即可求得答案;(3)設(shè)E是AC的中點(diǎn),連接ME.當(dāng)t=4時(shí),點(diǎn)Q與點(diǎn)B重合,運(yùn)動(dòng)停止.設(shè)此時(shí)PQ的中點(diǎn)為F,連接EF,由△PMN∽△PQC.利用相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
求收工時(shí),檢修小組在地的哪個(gè)方向?距離地多遠(yuǎn)?
在第幾次紀(jì)錄時(shí)距地最遠(yuǎn)?
若汽車行駛每千米耗油升,問從地出發(fā),檢修結(jié)束后再回到地共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1) (2-3)÷; (2) (-)2+2×;
(3) ; (4) (-2)×-4;
(5)(-1)(+1)-(-)-2+|1-|-(π-2)0+;
(6).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:設(shè)a+b=(m+n)2(其中a,b,m,n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.請(qǐng)你仿照小明的方法解決下列問題:
(1)當(dāng)a,b,m,n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a=______________,b=________;
(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:
________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均為正整數(shù),求a的值.
(4)試化簡(jiǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 “囧”(jiong)是近時(shí)期網(wǎng)絡(luò)流行語,像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為20的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)“囧”字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為x、y,剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)也分別為x、y.
(1)用含有x、y的代數(shù)式表示右圖中“囧”的面積;
(2)當(dāng)時(shí),求此時(shí)“囧”的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次知識(shí)競(jìng)賽共有20道題,每一題答對(duì)得5分,答錯(cuò)或不答都扣3分.
(1)小明考了68分,那么小明答對(duì)了多少問題?
(2)小亮獲得二等獎(jiǎng)(70分~90分),請(qǐng)你算算小亮答對(duì)了幾道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求對(duì)角線BD的長(zhǎng)和梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)3ab2(﹣a2b)2abc;
(2)(﹣x2y)3(﹣3xy2);
(3)(﹣3xy2)3(x3y);
(4)(x2+3x)﹣2(4x﹣x2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com