【題目】對垃圾進(jìn)行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了了解同學(xué)們對垃圾分類知識的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學(xué)興趣小組的同學(xué)們設(shè)計了垃圾分類知識及投放情況問卷,并在本校隨機(jī)抽取若干名同學(xué)進(jìn)行了問卷測試,根據(jù)測試成績分布情況,他們將全部測試成績分成、四組,繪制了如下統(tǒng)計圖表:

垃圾分類知識及投放情況問卷測試成績統(tǒng)計圖表

組別

分?jǐn)?shù)/

頻數(shù)

各組總分/

依據(jù)以上統(tǒng)計信息,解答下列問題:

1)求得___________

2)這次測試成績的中位數(shù)落在______組;

3)求本次全部測試成績的平均數(shù).

【答案】1,;(2;(380.1

【解析】

根據(jù)B組的頻數(shù)及頻率可求得樣本總量,然后用樣本量乘以D組的百分比可求得m的值,用A的頻數(shù)除以樣本容量即可求得n的值;根據(jù)中位數(shù)的定義進(jìn)解答即可求得答案;根據(jù)平均數(shù)的定義進(jìn)行求解即可.

解:(1)72÷36%=200

∴m=200-38-72-60=30;n=38÷200=19%

故答案為:30,19%;

(2)200人,中位數(shù)落在第100和第101的平均數(shù)上

中位數(shù)落在B;

(3)本次全部測試成績的平均數(shù)為:

()

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:

(1)如圖1,若BC=3,AB=5,則ctanB=

(2)ctan60°=

(3)如圖2,已知:ABC中,B是銳角,ctan C=2,AB=10,BC=20,試求B的余弦cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:

探究題:我們知道等腰三角形的兩個底角相等,如下面每個圖中的ABCABBC是兩腰,所以∠BAC=BCA.利用這條性質(zhì),解決下面的問題:

已知下面的正多邊形中,相鄰四個頂點連接的對角線交于點O它們所夾的銳角為a.如圖:

正五邊形α=_____;正六邊形α=______;正八邊α=_____;當(dāng)正多邊形的邊數(shù)是n時,α=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一黃金周期間,海洋中學(xué)決定組織部分優(yōu)秀老師去北京旅游,天馬旅行社推出如下收費(fèi)標(biāo)準(zhǔn):

(1)學(xué)校規(guī)定,人均旅游費(fèi)高于700元,但又想低于1000元,那么該校所派人數(shù)應(yīng)在什么范圍內(nèi);

(2)已知學(xué)校已付旅游費(fèi)27000元,問該校安排了多少名老師去北京旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對學(xué)生進(jìn)行校園安全知識知識測試,并隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖.

請你根據(jù)圖中所給的信息解答下列問題:

1)抽取的人數(shù)是____________人;補(bǔ)全條形統(tǒng)計圖;

2一般等級所在扇形的圓心角的度數(shù)是________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形, △ABC△A′ B′ C′是關(guān)于點0為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.

(1)畫出位似中心點0

(2)求出△ABC△A′B′C′的位似比;

(3)以點0為位似中心,再畫一個△A1B1C1,使它與△ABC的位似比等于1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖,平分,易知:,

探究:(1)如圖,平分.求證:

應(yīng)用:(2)在圖中,平分,如果,則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB=6,AD=8,點M在對角線AC上,且AM:MC=2:3,過點M作EFAC交AD于點E,交BC于點F.在AC上取一點P,使∠MEP=∠EAC,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CDAB,AEBC,垂足分別為D、E,CDAE交于點F

①寫出圖1中所有的全等三角形 ;

②線段AF與線段CE的數(shù)量關(guān)系是

問題探究:

如圖2,△ABC中,∠BAC=45°AB=BC,AD平分∠BAC,ADCD,垂足為D,ADBC交于點E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°AB=BC,點DAC上,∠EDC= BAC,DECE,垂足為E,DEBC交于點F.求證:DF=2CE

要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

查看答案和解析>>

同步練習(xí)冊答案