【題目】情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 .
問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE.
要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
【答案】1.①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE.見解析;2.見解析;3.見解析
【解析】
情境觀察:①由全等三角形的判定方法容易得出結(jié)果;
②由全等三角形的性質(zhì)即可得出結(jié)論;
問題探究:延長AB、CD交于點G,由ASA證明△ADC≌△ADG,得出對應(yīng)邊相等CD=GD,即CG=2CD,證出∠BAE=∠BCG,由ASA證明△ADC≌△CBG,得出AE=CG=2CD即可.
拓展延伸:作DG⊥BC交CE的延長線于G,同上證明三角形全等,得出DF=CG即可.
①圖1中所有的全等三角形為△ABE≌△ACE,△ADF≌△CDB;故答案為:△ABE≌△ACE,△ADF≌△CDB
②線段AF與線段CE的數(shù)量關(guān)系是:AF=2CE;故答案為:AF=2CE.
問題探究:
證明:延長AB、CD交于點G,如圖2所示:
∵AD平分∠BAC,
∴∠CAD=∠GAD,
∵AD⊥CD,
∴∠ADC=∠ADG=90°,
在△ADC和△ADG中,
,
∴△ADC≌△ADG(ASA),
∴CD=GD,即CG=2CD,
∵∠BAC=45°,AB=BC,
∴∠ABC=90°,
∴∠CBG=90°,
∴∠G+∠BCG=90°,
∵∠G+∠BAE=90°,
∴∠BAE=∠BCG,
在△ABE和△CBG中,
,
∴△ADC≌△CBG中(ASA),
∴AE=CG=2CD.
拓展延伸:
解:作DG⊥BC交CE的延長線于G,
如圖3所示.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了了解同學(xué)們對垃圾分類知識的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識,普及垃圾分類及投放的相關(guān)知識,某校數(shù)學(xué)興趣小組的同學(xué)們設(shè)計了“垃圾分類知識及投放情況”問卷,并在本校隨機(jī)抽取若干名同學(xué)進(jìn)行了問卷測試,根據(jù)測試成績分布情況,他們將全部測試成績分成、、、四組,繪制了如下統(tǒng)計圖表:
“垃圾分類知識及投放情況”問卷測試成績統(tǒng)計圖表
組別 | 分?jǐn)?shù)/分 | 頻數(shù) | 各組總分/分 |
依據(jù)以上統(tǒng)計信息,解答下列問題:
(1)求得_____,______;
(2)這次測試成績的中位數(shù)落在______組;
(3)求本次全部測試成績的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達(dá)B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時間x(分)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象解答下列問題:
(1)請寫出甲的騎行速度為 米/分,點M的坐標(biāo)為 ;
(2)求甲返回時距A地的路程y與時間x之間的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);
(3)請直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時間兩人距C地的路程相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(-4, 1),B(-1,3),C(-1,1)
(1)將△ABC以原點O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△;平移△ABC,若A對應(yīng)的點坐標(biāo)為(-4,-5),畫出△;
(2)若△繞某一點旋轉(zhuǎn)可以得到△,直接寫出旋轉(zhuǎn)中心坐標(biāo)是__________;
(3)在x軸上有一點P是的PA+PB的值最小,直接寫出點P的坐標(biāo)___________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小強(qiáng)洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強(qiáng)身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強(qiáng)頭部E點與地面DK相距多少?
(2)小強(qiáng)希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階,下圖是其中的甲、乙兩段臺階的示意圖(圖中的數(shù)字表示每一級臺階的高度,單位cm).已知數(shù)據(jù)15、16、16、14、14、15的方差S甲2=,數(shù)據(jù)11、15、18、17、10、19的方差S乙2=.
請你用學(xué)過的統(tǒng)計知識(平均數(shù)、中位數(shù)、方差和極差)通過計算,回答下列問題:
(1)兩段臺階路有哪些相同點和不同點?
(2)哪段臺階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com