【題目】如圖,已知A、F、C、D四點(diǎn)在同一條直線上,AF=CD,ABDE,且AB=DE.

(1)求證:△ABC≌△DEF;

(2)若EF=3,DE=4,DEF=90°,請(qǐng)直接寫(xiě)出使四邊形EFBC為菱形時(shí)AF的長(zhǎng)度.

【答案】(1)證明見(jiàn)解析;(2)AF=

【解析】1)根據(jù)SAS進(jìn)行證明即可;

(2)利用勾股定理分別求出DF、OE、OF即可解決問(wèn)題.

(1)ABDE,

∴∠A=D,

AF=CD,

AF+FC=CD+FC,

AC=DF,

AB=DE,

∴△ABC≌△DEF;

(2)如圖,連接ABADO,

RtEFD中,∵∠DEF=90°,EF=3,DE=4,

DF==5,

∵四邊形EFBC是菱形,

BECF,EO=

OF=OC=,

CF=,

AF=CD=DF﹣FC=5﹣=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在ABC中,∠ACB90°,ACBC,直線MN經(jīng)過(guò)點(diǎn)C,且ADMND,BEMNE.求證:①△ADC≌△CEB;②DEADBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)三角形的第一條邊長(zhǎng)為2a+5b,第二條邊比第一條邊長(zhǎng)3a﹣2b,第三條邊比第二條邊短3a.

1則第二邊的邊長(zhǎng)為 ,第三邊的邊長(zhǎng)為 ;

2用含a,b的式子表示這個(gè)三角形的周長(zhǎng),并化簡(jiǎn);

3)若a,b滿足|a﹣5|+b﹣32=0,求出這個(gè)三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著“三農(nóng)”問(wèn)題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計(jì)圖.依據(jù)統(tǒng)計(jì)圖得出的以下四個(gè)結(jié)論正確的是(  )

A. 的收入去年和前年相同

B. 的收入所占比例前年的比去年的大

C. 去年的收入為2.8萬(wàn)

D. 前年年收入不止①②③三種農(nóng)作物的收入

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一個(gè)圓的內(nèi)接正方形和正三角形的邊心距的比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=150°∠BCD30°,點(diǎn)M在BC上,AB=BM,CM=CD,點(diǎn)N為AD的中點(diǎn),求證:BN⊥CN。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC

1)利用尺規(guī)作圖作邊BC的高AD,垂足為D(保留作圖痕跡,不寫(xiě)作法);

2)求證:BD=CD

3)如果三角形的周長(zhǎng)是22,一邊長(zhǎng)為5,求它的另外兩邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了完成舌尖上的中國(guó)的錄制,節(jié)目組隨機(jī)抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息完成下列問(wèn)題:

(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計(jì)圖中a=  ,扇形統(tǒng)計(jì)圖中A部分圓心角的度數(shù)為  

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果全省共有這四類特色美食120種,請(qǐng)你估計(jì)約有多少種屬于豆制品類”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAE+∠AED180°,∠1=∠2,那么∠F=∠G嗎?為什么?

解:因?yàn)椤?/span>BAE+∠AED180°( 已知)

所以ABCD________

所以∠BAE=∠AEC________

因?yàn)椤?/span>1=∠2( 已知)

所以∠BAE—1=∠AEC—2(等式性質(zhì))

即∠3=∠4

所以AFEG________,

所以∠F=∠G________.

查看答案和解析>>

同步練習(xí)冊(cè)答案