【題目】閱讀下列材料并解決后面的問題
材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Npler,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evler,1707--1783)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系,我們知道,n個相同的因數(shù)a相乘aa…,a記為an,如23=8,此時,3叫做以2為底8的對數(shù),記為log28,即log28=3一般地若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab,即logab=n.如34=81,則4叫做以3為底81的對數(shù),記為log381,即log381=4.
(1)計算下列各對數(shù)的值:log24=______,log216=______,log264=______;
(2)通過觀察(1)中三數(shù)log24、log216、log264之間滿足的關(guān)系式是______;
(3)拓展延伸:下面這個一股性的結(jié)論成立嗎?我們來證明logaM+logaN=logaMN(a>0且a≠1,M>0,N>0)
證明:設(shè)logaM=m,logaN=n,
由對數(shù)的定義得:am=M,an=N,
∴aman=am+n=MN,
∴logaMN=m+n,
又∵logaM=m,logaN=n,
∴logaM+logaN=logaMN(a>0且a≠1,M>0,N>0);
(4)仿照(3)的證明,你能證明下面的一般性結(jié)論嗎?logaM-logaN=loga(a>0且a≠1,M>0,N>0)
(5)計算:log34+log39-log312的值為______.
【答案】(1)2,4,6;(2)log24+log216=log264;(4)見解析;(5)1
【解析】
(1)直接根據(jù)定義計算即可;
(2)根據(jù)計算的值可得等量關(guān)系式:log24+log216=log264;
(4)根據(jù)同底數(shù)冪的除法可得結(jié)論;
(5)直接運用(3)(4)中得出的公式即可將原式化簡為:log3,再利用閱讀材料中的定義計算即可.
解:(1)log24=log222=2,log216=log224=4,log264=log226=6;
故答案為:2,4,6;
(2)通過觀察(1)中三數(shù)log24、log216、log264之間滿足的關(guān)系式是:log24+log216=log264;
(4)證明:設(shè)logaM=m,logaN=n,
由對數(shù)的定義得:am=M,an=N,
∴am÷an=am-n=,
∴loga=m-n,
又∵logaM=m,logaN=n,
∴logaM-logaN=loga(a>0且a≠1,M>0,N>0)
(4)log34+log39-log312,
=log3,
=log33,
=1.
故答案為:1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點A在第一象限,AB⊥x軸于B.AC⊥y軸于C,A(4a,3a),且四邊形ABOC的面積為48.
(1)如圖1,直接寫出點A的坐標(biāo);
(2)如圖2,點D從O出發(fā)以每秒1個單位的速度沿y軸正半軸運動,同時點E從A出發(fā),以每秒2個單位的速度沿射線BA運動,DE交線段AC于F,設(shè)運動的時間為t,當(dāng)S△AEF<S△CDF時,求t的取值范圍;
(3)如圖3,將線段BC平移,使點B的對應(yīng)點M恰好落在y軸負(fù)半軸上,點C的對應(yīng)點為N,連BN交y軸軸于P,當(dāng)OM=3OP時,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個定點,且OP=4,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于4,則α=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為1個單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點都在格點上,請解答下列問題:
(1)①作出△ABC向左平移4個單位長度后得到的△A1B1C1, 并寫出點C1的坐標(biāo);
②作出△ABC關(guān)于原點O對稱的△A2B2C2, 并寫出點C2的坐標(biāo);
(2)已知△ABC關(guān)于直線l對稱的△A3B3C3的頂點A3的坐標(biāo)為(-4,-2),請直接寫出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價為每只4元,按要求在20天內(nèi)完成.為了按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足如下關(guān)系:
y=
(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?
(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標(biāo)上數(shù)字1,2,3,4,5,6,…,則從左往右第100個黃球上所標(biāo)的數(shù)字為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對稱,,是函數(shù)圖象上的兩點,連接,點是函數(shù)圖象上的一點,連接,.
(1)求,的值;
(2)求所在直線的表達式;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com