【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
【答案】2
【解析】首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對(duì)應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.
如圖,連接BE,
∵四邊形BCEK是正方形,
∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
∴BF=CF,
根據(jù)題意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,
∴KO:KF=1:2,
∴KO=OF=CF=BF,
在Rt△PBF中,tan∠BOF==2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故答案為:2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F為垂足,則下列四個(gè)結(jié)論:(1)AD上任意一點(diǎn)到點(diǎn)C、D的距離相等;(2)AD上任意一點(diǎn)到AB、AC的距離相等;(3)AD⊥BC且BD=CD;(4)∠BDE=∠CDF,其中正確的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC
(1)填空:如圖1,∠B= °,∠C= °;
(2)如圖2,若M為線段BC上的點(diǎn),過(guò)M作MH⊥AD,交AD的延長(zhǎng)線于點(diǎn)H,分別交直線AB、AC與點(diǎn)N、E.
①求證:△ANE是等腰三角形;
②線段BN、CE、CD之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)45°后得到△AB′C′,則線段BC在上述旋轉(zhuǎn)過(guò)程中所掃過(guò)部分(陰影部分)的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:,.
(1)請(qǐng)找出圖中一對(duì)全等的三角形,并說(shuō)明理由;
(2)若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料并解決后面的問(wèn)題
材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Npler,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evler,1707--1783)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系,我們知道,n個(gè)相同的因數(shù)a相乘aa…,a記為an,如23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28,即log28=3一般地若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab,即logab=n.如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381,即log381=4.
(1)計(jì)算下列各對(duì)數(shù)的值:log24=______,log216=______,log264=______;
(2)通過(guò)觀察(1)中三數(shù)log24、log216、log264之間滿足的關(guān)系式是______;
(3)拓展延伸:下面這個(gè)一股性的結(jié)論成立嗎?我們來(lái)證明logaM+logaN=logaMN(a>0且a≠1,M>0,N>0)
證明:設(shè)logaM=m,logaN=n,
由對(duì)數(shù)的定義得:am=M,an=N,
∴aman=am+n=MN,
∴logaMN=m+n,
又∵logaM=m,logaN=n,
∴logaM+logaN=logaMN(a>0且a≠1,M>0,N>0);
(4)仿照(3)的證明,你能證明下面的一般性結(jié)論嗎?logaM-logaN=loga(a>0且a≠1,M>0,N>0)
(5)計(jì)算:log34+log39-log312的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于1200元,那么銷(xiāo)售單價(jià)至少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com