【題目】如圖,P是⊙O外一點(diǎn),PA和PB分別切⊙O于A、B兩點(diǎn),已知⊙O的半徑為6cm,∠PAB=60°,若用圖中陰影部分以扇形圍成一個圓錐的側(cè)面,則這個圓錐的高為

【答案】4
【解析】解:∵PA和PB分別切⊙O于A和B點(diǎn), ∴PA=PB,
∴∠PBA=∠PAB=60°
∴∠APB=60°,
∴∠AOB=120°,
∵半徑為3cm,
∴扇形的弧長為 =4π,
∴圓錐的底面半徑為4π÷2π=2,
∴圓錐的高為 =4 cm,
所以答案是:4
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)P從PB處開始按順時針方向旋轉(zhuǎn),PM交邊AB(或AD)于點(diǎn)E,PN交邊AD(或CD)于點(diǎn)F,當(dāng)PN旋轉(zhuǎn)至PC處時,∠MPN的旋轉(zhuǎn)隨即停止.
(1)特殊情形:如圖②,發(fā)現(xiàn)當(dāng)PM過點(diǎn)A時,PN也恰巧過點(diǎn)D,此時,△ABP△PCD(填“≌”或“~”);
(2)類比探究:如圖③,在旋轉(zhuǎn)過程中, 的值是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論: ①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當(dāng)x>2時,y隨x的增大而減小.
其中正確的結(jié)論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,⊙O的半徑為4,則這個正六邊形的邊心距OM和 的長分別為(
A.2,
B. ,π
C.2 ,
D.2 ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A(2 ,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,
M是線段AC上方反比例函數(shù)圖象上一動點(diǎn),過M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為( ,1),下列結(jié)論:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確結(jié)論的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實(shí)數(shù)根.其中正確的結(jié)論有(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線l平行于直線EC,且直線l與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線l上,則DF的長為

查看答案和解析>>

同步練習(xí)冊答案