【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫出點(diǎn)P的坐標(biāo).

【答案】
(1)解:∵點(diǎn)A(2,3)在y= 上,

∴m=6,

∴反比例函數(shù)解析式為y= ;

又∵點(diǎn)B(﹣3,n)在y= 上,

∴n=﹣2,

∴點(diǎn)B的坐標(biāo)為(﹣3,﹣2),

把A(2,3)和B(﹣3,﹣2)兩點(diǎn)的坐標(biāo)代入一次函數(shù)y=kx+b得

解得 ,

∴一次函數(shù)的解析為y=x+1


(2)解:對(duì)于一次函數(shù)y=x+1,令x=0求出y=1,即C(0,1),OC=1,

根據(jù)題意得:SABP= PC×2+ PC×3=5,

解得:PC=2,

所以,P(0,3)或(0,﹣1).


【解析】(1)可先把A代入反比例函數(shù)解析式,求得m的值,進(jìn)而求得n的值,把A,B兩點(diǎn)分別代入一次函數(shù)解析式即可.(2)令x=0求出y的值,確定出C坐標(biāo),得到OC的長,三角形ABP面積由三角形ACP面積與三角形BCP面積之和求出,由已知的面積求出PC的長,即可求出OP的長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y= x2交于點(diǎn)Q,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷售這種冰箱的利潤是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《雁棲塔》位于懷柔“北京雁棲湖國際會(huì)都中心”所處大島西南部突出部位的半島上,是“北京雁棲湖國際會(huì)都中心”的標(biāo)志性建筑,也是整個(gè)雁棲湖風(fēng)景區(qū)的標(biāo)志性建筑. 某校數(shù)學(xué)課外小組為了測(cè)量《雁棲塔》(底部可到達(dá))的高度,準(zhǔn)備了如下的測(cè)量工具:①平面鏡,②皮尺,③長為1米的標(biāo)桿,④高為1.5m的測(cè)角儀(測(cè)量仰角、俯角的儀器).第一組選擇用②④做測(cè)量工具;第二組選用②③做測(cè)量工具;第三組利用自身的高度并選用①②做測(cè)量工具,分別畫出如下三種測(cè)量方案示意圖.

(1)請(qǐng)你判斷如下測(cè)量方案示意圖各是哪個(gè)小組的,在測(cè)量方案示意圖下方的括號(hào)內(nèi)填上小組名稱.
(2)選擇其中一個(gè)測(cè)量方案示意圖,寫出求《雁棲塔》高度的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),下列說法中不正確的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E.連接AC、OC、BC.
(1)求證:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α= ,有以下的結(jié)論:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時(shí),BD為8或 ;④0<BE≤5,其中正確的結(jié)論是(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AC=10,BC=16,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外一點(diǎn),PA和PB分別切⊙O于A、B兩點(diǎn),已知⊙O的半徑為6cm,∠PAB=60°,若用圖中陰影部分以扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為

查看答案和解析>>

同步練習(xí)冊(cè)答案