【題目】在一個(gè)布口袋里裝有紅色、黑色、藍(lán)色和白色的小球各1個(gè),如果閉上眼睛隨機(jī)地從布袋中取出一個(gè)球,記下顏色,放回布袋攪勻,再閉上眼睛隨機(jī)的再?gòu)牟即腥〕鲆粋(gè)球.用樹(shù)狀圖或列表法解決求:

(1)連續(xù)兩次恰好都取出白色球的概率;

(2)連續(xù)兩次恰好取出一紅、一黑的概率.

【答案】(1);(2

【解析】試題分析:1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與連續(xù)兩次恰好都取出白色球的情況,再利用概率公式即可求得答案;
2)由(1)中的樹(shù)狀圖,可求得連續(xù)兩次恰好取出一紅、一黑的情況,再利用概率公式即可求得答案.

試題解析:(1)畫(huà)樹(shù)狀圖得:

∵共有16種等可能的結(jié)果,連續(xù)兩次恰好都取出白色球的只有1種情況,

∴連續(xù)兩次恰好都取出白色球的概率為: ;

2)∵連續(xù)兩次恰好取出一紅、一黑的有2種情況,

∴連續(xù)兩次恰好取出一紅、一黑的概率為: =

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,O為菱形ABCD的對(duì)稱(chēng)中心,已知C20),D0,﹣1),N為線(xiàn)段CD上一點(diǎn)(不與C、D重合).

1)求以C為頂點(diǎn),且經(jīng)過(guò)點(diǎn)D的拋物線(xiàn)解析式;

2)設(shè)N關(guān)于BD的對(duì)稱(chēng)點(diǎn)為N1N關(guān)于BC的對(duì)稱(chēng)點(diǎn)為N2,求證:△N1BN2∽△ABC

3)求(2)中N1N2的最小值;

4)過(guò)點(diǎn)Ny軸的平行線(xiàn)交(1)中的拋物線(xiàn)于點(diǎn)P,點(diǎn)Q為直線(xiàn)AB上的一個(gè)動(dòng)點(diǎn),且∠PQA=∠BAC,求當(dāng)PQ最小時(shí)點(diǎn)Q坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過(guò)C地,圖中AC=10千米,∠CAB=25°,CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.

(1)求改直的公路AB的長(zhǎng);

(2)問(wèn)公路改直后比原來(lái)縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分線(xiàn),CD=5cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線(xiàn)y=x-3x軸于點(diǎn)B,交y軸于點(diǎn)C,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,0)B,C三點(diǎn),點(diǎn)Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線(xiàn)的解析式;

(2)在第一象限的拋物線(xiàn)上存在一點(diǎn)P,滿(mǎn)足SABC=SPBC,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)D是直線(xiàn)BC的下方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)D點(diǎn)作DEy軸,交直線(xiàn)BC于點(diǎn)E,①當(dāng)四邊形CDEF為平行四邊形時(shí),求D點(diǎn)的坐標(biāo);

②是否存在點(diǎn)D,使CEDF互相垂直平分?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如圖.下列說(shuō)法錯(cuò)誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總?cè)藬?shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=3cm,BC=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)QC出發(fā)以1cm/s的速度向點(diǎn)A移動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t.

1t為何值時(shí),△CPQ的面積等于△ABC面積的

(2)運(yùn)動(dòng)幾秒時(shí),△CPQ與△CBA相似?

(3)在運(yùn)動(dòng)過(guò)程中,PQ的長(zhǎng)度能否為1cm?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1所示,ABC中,∠ACB的角平分線(xiàn)CF與∠EAC的角平分線(xiàn)AD的反向延長(zhǎng)線(xiàn)交于點(diǎn)F

①若∠B90°則∠F   ;

②若∠Ba,求∠F的度數(shù)(用a表示);

2)如圖2所示,若點(diǎn)GCB延長(zhǎng)線(xiàn)上任意一動(dòng)點(diǎn),連接AG,∠AGB與∠GAB的角平分線(xiàn)交于點(diǎn)H,隨著點(diǎn)G的運(yùn)動(dòng),∠F+H的值是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=s×ts,t是正整數(shù),且s≤t),如果p×qn的所有這種分解中兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×qn的最佳分解,并規(guī)定:Fn=.例如18可分解成1×18,2×93×6這三種,這時(shí)就有F18==.給出下列關(guān)于Fn)的說(shuō)法:

1F2=;(2F12=;(3F27=3;(4)若n是一個(gè)完全平方數(shù),則Fn=1

其中正確說(shuō)法的個(gè)數(shù)是( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案