【題目】(1)如圖1所示,△ABC中,∠ACB的角平分線CF與∠EAC的角平分線AD的反向延長線交于點F;
①若∠B=90°則∠F= ;
②若∠B=a,求∠F的度數(shù)(用a表示);
(2)如圖2所示,若點G是CB延長線上任意一動點,連接AG,∠AGB與∠GAB的角平分線交于點H,隨著點G的運動,∠F+∠H的值是否變化?若變化,請說明理由;若不變,請求出其值.
【答案】(1)①45°;②∠F=a;(2)∠F+∠H的值不變,是定值180°.
【解析】
(1)①②依據(jù)AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依據(jù)∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根據(jù)∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根據(jù)角平分線的定義以及三角形內(nèi)角和定理,即可得到∠H=90°+∠ABG,進而得到∠F+∠H=90°+∠CBG=180°.
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案為:45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB與∠GAB的角平分線交于點H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不變,是定值180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點,
(1)如圖1,過點E作EH⊥BC,垂足為點H,求線段CH的長;
(2)作線段BE的垂直平分線分別交邊BC、BE、AB于點D、O、F.
①如圖2,當(dāng)∠BAC=90°時,求BD的長;
②如圖3,設(shè)tan∠ACB=x,BD=y,求y與x之間的函數(shù)表達式和tan∠ACB的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個布口袋里裝有紅色、黑色、藍色和白色的小球各1個,如果閉上眼睛隨機地從布袋中取出一個球,記下顏色,放回布袋攪勻,再閉上眼睛隨機的再從布袋中取出一個球.用樹狀圖或列表法解決求:
(1)連續(xù)兩次恰好都取出白色球的概率;
(2)連續(xù)兩次恰好取出一紅、一黑的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和7,乙口袋中裝有兩個相同的小球,它們的標號分別為4和5,丙口袋中裝有三個相同的小球,它們的標號分別為3,8,9.從這3個口袋中各隨機地取出1個小球.
(1)求取出的3個小球的標號全是奇數(shù)的概率是多少?
(2)以取出的三個小球的標號分別表示三條線段的長度,求這些線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線( a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時,求拋物線的解析式;
(2)若拋物線(t≠0)也經(jīng)過A點,求a與t之間的關(guān)系式;
(3)當(dāng)點A在拋物線上,且-2≤h<1時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com