【題目】已知,△ABC,AD⊥BD于點(diǎn)D,AE⊥CE于點(diǎn)E,連接DE.
(1)如圖1,若BD,CE分別為△ABC的外角平分線,求證:DE=(AB+BC+AC).
(2)如圖2,若BD,CE分別為△ABC的內(nèi)角平分線,(1)中的結(jié)論成立嗎?若成立請(qǐng)說(shuō)明理由;若不成立,請(qǐng)猜想出新的結(jié)論并證明;
(3)如圖3,若BD,CE分別為△ABC的一個(gè)內(nèi)角和一個(gè)外角的平分線,AB=8,BC=10,AC=7,請(qǐng)直接寫(xiě)出DE的長(zhǎng)為______.
【答案】(1)證明見(jiàn)解析;(2)不成立.DE=(AB+AC﹣BC),證明見(jiàn)解析;(3)4.5.
【解析】
(1)根據(jù)全等三角形的判定與性質(zhì),可得AB與BK,AC與CH的關(guān)系,根據(jù)等腰三角形的性質(zhì),可得AD與DK的關(guān)系,AE與EH的關(guān)系,根據(jù)三角形中位線的性質(zhì),可得答案;(2)都是內(nèi)角平分線時(shí),可根據(jù)等腰三角形三線合一的特點(diǎn)來(lái)求解,由于DB平分∠ABC,且AD⊥BD,如果延長(zhǎng)AD交BC于K,那么三角形ABK就是個(gè)等腰三角形,AD=DK,如果延長(zhǎng)AE到H,那么同理可證AG=GH,AC=CH,那么DE就是三角形AHK的中位線,DE就是HK的一半,而HK=BK﹣BH=BK﹣(BC﹣CH),由于BK=AB,CH=AC,那么可得出DE=(AB+AC﹣BC);(3)證法同(1),先根據(jù)題目給出的求法,得出GD是AC的一半,然后按(2)的方法,通過(guò)延長(zhǎng)AF來(lái)得出DF是(BC﹣AB)的一半,由此可得出DE=(BC+AC﹣AB),由此即可解決問(wèn)題.
(1)證明:如圖1,分別延長(zhǎng)AE、AD交BC于H、K,
在△BAD和△BKD中,
∵,
∴△BAD≌△BKD(ASA),
∴AD=KD,AB=KB,
同理可證,AE=HE,AC=HC,
∴DE=HK,
又∵HK=BK+BC+CH=AB+BC+AC,
∴DE=(AB+AC+BC);
(2)解:結(jié)論不成立.DE=(AB+AC﹣BC).
理由:如圖2,分別延長(zhǎng)AE、AD交BC于H、K,
在△BAD和△BKD中,
∵,
∴△BAD≌△BKD(ASA),
∴AD=KD,AB=KB,
同理可證,AE=HE,AC=HC,
∴DE=HK,
又∵HK=BK﹣BH=AB+AC﹣BC,
∴DE=(AB+AC﹣BC).
(3)解:分別延長(zhǎng)AE、AD交BC或延長(zhǎng)線于H、K,
在△BAD和△BKD中,
∵,
∴△BAD≌△BKD(ASA),
∴AD=KD,AB=KB
同理可證,AE=HE,AC=HC,
∴DE=KH
又∵KH=BC﹣BK+HC=BC+AC﹣AB.
∴DE=(BC+AC﹣AB),
∵AB=8,BC=10,AC=7,
∴DE=(10+7﹣8)=4.5,
故答案為4.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過(guò)批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加“荊州市中小學(xué)生首屆詩(shī)詞大會(huì)”,某校八年級(jí)的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(jī)(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過(guò)數(shù)據(jù)分析,列表如下:
班級(jí) | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫(xiě)出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績(jī)較好?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將矩形紙片ABCD沿AC剪開(kāi),得到△ABC和△ACD.
(1)將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過(guò)點(diǎn)C′作C′E∥AC,交DC的延長(zhǎng)線于點(diǎn)E,試判斷四邊形ACEC′的形狀,并說(shuō)明理由.
(2)若將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使B,A,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過(guò)點(diǎn)A作AF⊥CC′于點(diǎn)F,延長(zhǎng)AF至點(diǎn)G,使FG=AF,連接CG,C′G,試判斷四邊形ACGC′的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點(diǎn)D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“有兩角及其中一角的平分線對(duì)應(yīng)相等的兩個(gè)三角形全等”是_____命題.(填“真”或“假”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初一(1)班針對(duì)“你最喜愛(ài)的課外活動(dòng)項(xiàng)目”對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.
根據(jù)以上信息解決下列問(wèn)題:
(1) , ;
(2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,以AB為一邊作等邊△ABE,使點(diǎn)E落在正方形ABCD的內(nèi)部,連接AC交BE于點(diǎn)F,連接CE、DE,則下列說(shuō)法中:①△ADE≌△BCE;②∠ACE=30°;③AF=CF;④ =2+,其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com