【題目】如圖,正方形ABCD的邊長為3cm,P,Q分別從B,A出發(fā)沿BC,AD方向運動,P點的運動速度是1cm/秒,Q點的運動速度是2cm/秒,連接A,P并過Q作QE⊥AP垂足為E.

(1)求證:△ABP∽△QEA;
(2)當(dāng)運動時間t為何值時,△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運動時刻t表示△QEA的面積y(不要求考t的取值范圍).(提示:解答(2)(3)時可不分先后)

【答案】
(1)

證明:∵四邊形ABCD為正方形;

∴∠BAP+∠QAE=∠B=90°,

∵QE⊥AP;

∴∠QAE+∠EQA=∠AEQ=90°

∴∠BAP=∠EQA,∠B=∠AEQ;

∴△ABP∽△QEA(AA)


(2)

解:∵△ABP≌△QEA;

∴AP=AQ(全等三角形的對應(yīng)邊相等);

在RT△ABP與RT△QEA中根據(jù)勾股定理得AP2=32+t2,AQ2=(2t)2

即32+t2=(2t)2

解得t1= ,t2=﹣ (不符合題意,舍去)

答:當(dāng)t取 時△ABP與△QEA全等


(3)

解:由(1)知△ABP∽△QEA;

=( 2

=( 2

整理得:y=


【解析】本題主要考查的是相似三角形的綜合應(yīng)用,解答本題主要應(yīng)用了正方形的性質(zhì)、全等三角形的性質(zhì)和判定、勾股定理是解題的關(guān)鍵.(1)根據(jù)正方形的性質(zhì)和相似三角形的判定和性質(zhì)證明即可;(2)根據(jù)全等三角形的判定和性質(zhì),利用勾股定理解答即可;(3)根據(jù)相似三角形的性質(zhì)得出函數(shù)解析式即可.
【考點精析】利用勾股定理的概念和正方形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形ABC中,ABAC=10,BC=12,DBC邊上的任意一點,過點D分別作DEAB,DFAC,垂足分別為EF,則DEDF______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,直線分別交x、y軸于點A、C,點Bx軸負(fù)半軸上,過點A于點K,若

如圖1,求點B坐標(biāo);

如圖2,點PAC延長線上一點,過點P交直線BC于點Q,設(shè)點P的橫坐標(biāo)為t,PQ長為d,求dt的函數(shù)關(guān)系式不必寫出自變量t的取值范圍;

的條件下,連接OK,過點P軸于點H,點FHB上一點,連接PF,點DPF上,將點F沿x軸正方向平移個單位到點G,連接DG,交PH于點E,若,,,求點P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點MO,N對應(yīng)的數(shù)分別為-1,0,3P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點MN的距離相等,那么x的值是

3數(shù)軸上是否存在點P,使點P到點MN的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點MN的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師在課堂上提出一個問題:通過探究知道: ≈1.414…,它是個無限不循環(huán)小數(shù),也叫無理數(shù),它的整數(shù)部分是1,那么有誰能說出它的小數(shù)部分是多少,小明舉手回答:它的小數(shù)部分我們無法全部寫出來,但可以用1來表示它的小數(shù)部分,張老師夸獎小明真聰明,肯定了他的說法.現(xiàn)請你根據(jù)小明的說法解答:

1的小數(shù)部分是a 的整數(shù)部分是b,求a+b的值.

2)已知8+=x+y,其中x是一個整數(shù),0y1,求3x+y2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點坐標(biāo)分別是

如果將向上平移1個單位長度,再向左平移2個單位長度,得到,直接寫出、的坐標(biāo),并求的面積;

求出線段AB中的平移過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)營養(yǎng)套餐的合理搭配,某電商推出兩款適合不同人群的甲、乙兩種袋裝的混合粗糧.甲種袋裝粗糧每袋含有3千克A粗糧,1千克B粗糧,1千克C粗糧;乙種袋裝粗糧每袋含有1千克A粗糧,2千克B粗糧,2千克C粗糧.甲、乙兩種袋裝粗糧每袋成本分別等于袋中的A、B、C三種粗糧成本之和.已知每袋甲種粗糧的成本是每千克A種粗糧成本的7.5倍,每袋乙種粗糧售價比每袋甲種粗糧售價高20%,乙種袋裝粗糧的銷售利潤率是20%.當(dāng)銷售這兩款袋裝粗糧的銷售利潤率為24%時,該電商銷售甲、乙兩種袋裝粗糧的袋數(shù)之比是_____(商品的銷售利潤率=×100%)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了監(jiān)控一不規(guī)則多邊形藝術(shù)走廊內(nèi)的活動情況,現(xiàn)已在A,B兩處各安裝了一個監(jiān)控探頭(走廊內(nèi)所用探頭的觀測區(qū)域為圓心角最大可取到180°的扇形),圖中的陰影部分是A處監(jiān)控探頭觀測到的區(qū)域.要使整個藝術(shù)走廊都能被監(jiān)控到,還需再安裝一個監(jiān)控探頭,則安裝的位置是( )

A.E處
B.F處
C.G處
D.H處

查看答案和解析>>

同步練習(xí)冊答案