【題目】如圖,在中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②;③.
(1)上述三個條件中,由哪兩個條件可以判定是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,說明你的理由.
【答案】(1)①②或①③;(2)見解析.
【解析】
(1)由①②;①③.兩個條件可以判定△ABC是等腰三角形,
(2)先求出∠ABC=∠ACB,即可證明△ABC是等腰三角形.
解:(1)①②;①③.
(2)選①③證明如下,
∵OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
選①②證明如下,
在△EBO與△DCO中,
∵,
∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∵∠EBO=∠DCO,
又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.
(1)求證:MD=MC;
(2)若⊙O的半徑為5,AC=4,求MC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,放入6個形狀和大小都相同的小長方形,已知小長方形的長為a,寬為b,且a>b.
(1)用含a、b的代數(shù)式表示長方形ABCD的長AD、寬AB;
(2)用含a、b的代數(shù)式表示陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎自行車從M地出發(fā)沿一條公路勻速前往N地,乙騎摩托車從N地出發(fā)沿同一條公路勻速前往M地,
已知乙比甲晚出發(fā)0.5小時且先到達目的地.設(shè)甲行駛的時間為t(h),甲乙兩人之間的路程為y(km),
y與t的函數(shù)關(guān)系如圖1所示,請解決以下問題:
(1)寫出圖1中點C表示的實際意義并求線段BC所在直線的函數(shù)表達式.
(2)①求點D的縱坐標.
②求M,N兩地之間的距離.
(3)設(shè)乙離M地的路程為S乙 (km),請直接寫出S甲 與時間t(h)的函數(shù)表達式,并在圖2所給的直角坐標系中畫出它的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN,點B、D分別在AN、AM上.
(1)如圖1,若∠ABC=∠ADC=90°,請你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;
(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
(實踐操作)三角尺中的數(shù)學
數(shù)學實踐活動課上,“奮進”小組將一副直角三角尺的直角頂點疊放在一起,如圖1,使直角頂點重合于點C.
(問題發(fā)現(xiàn))
(1)①填空:如圖1,若∠ACB=145°,則∠ACE的度數(shù)是 ,∠DCB的度數(shù) ,∠ECD的度數(shù)是 .
②如圖1,你發(fā)現(xiàn)∠ACE與∠DCB的大小有何關(guān)系?∠ACB與∠ECD的大小又有何關(guān)系?請直接寫出你發(fā)現(xiàn)的結(jié)論.
(類比探究)
(2)如圖2,當△ACD與△BCE沒有重合部分時,上述②中你發(fā)現(xiàn)的結(jié)論是否還依然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,點P的坐標為(m,n),則向量可以用點P的坐標表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則與互相垂直.
下面四組向量:①=(3,﹣9),=(1,﹣);
②=(2,π0),=(2﹣1,﹣1);
③=(cos30°,tan45°),=(sin30°,tan45°);
④=(+2,),=(﹣2,).
其中互相垂直的組有( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
已知:如圖1,等邊△A1A2A3內(nèi)接于⊙O,點P是上的任意一點,連接PA1,PA2,PA3,可證:PA1+PA2=PA3,從而得到:是定值.
(1)以下是小紅的一種證明方法,請在方框內(nèi)將證明過程補充完整;
證明:如圖1,作∠PA1M=60°,A1M交A2P的延長線于點M.
∵△A1A2A3是等邊三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2=PA2+PM=PA2+PA1.
∴,是定值.
(2)延伸:如圖2,把(1)中條件“等邊△A1A2A3”改為“正方形A1A2A3A4”,其余條件不變,請問:還是定值嗎?為什么?
(3)拓展:如圖3,把(1)中條件“等邊△A1A2A3”改為“正五邊形A1A2A3A4A5”,其余條件不變,則= (只寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com