【題目】下列關(guān)于一次函數(shù) y=-x2 的圖象性質(zhì)的說法中,不正確的是(

A.直線與 x 軸交點(diǎn)的坐標(biāo)是(02B.直線經(jīng)過第一、二、四象限

C.y x 的增大而減小D.與坐標(biāo)軸圍成的三角形面積為 2

【答案】A

【解析】

根據(jù)題意由題目中的函數(shù)解析式利用一次函數(shù)圖象的性質(zhì)可以判斷各個選項中的說法是否正確,從而可以解答本題.

解:A. 直線與 x 軸交點(diǎn)的坐標(biāo)是(2,0),直線與 y軸交點(diǎn)的坐標(biāo)是(02),故當(dāng)選;

B. y=-x2的圖象中,有直線經(jīng)過第一、二、四象限,故排除;

C. y=-x2的圖象中 ,有y x 的增大而減小,故排除;

D. 由一次函數(shù) y=-x2可知與坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為(02)和(2,0),

與坐標(biāo)軸圍成的三角形面積為,故排除.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組)

1

2

3

493x+22640

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)FBGAE于G,BG=,則梯形AECD的周長為( )

A.22 B.23 C.24 D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為培圣三角形,如:三個內(nèi)角分別為120 40、 20的三角形是培圣三角形”.如圖, MON 60,在射線OM 上找一點(diǎn) A ,過點(diǎn) A AB OM ON 于點(diǎn) B ,以 A 為端點(diǎn)作射線 AD 交線段OB 于點(diǎn)C (規(guī)定0 OAC 90 .

1 ABO 的度數(shù)為_____, AOB____(填不是)培圣三角形;

2)若BAC 60,求證: AOC 培圣三角形

3)當(dāng)ABC 培圣三角形時,求OAC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點(diǎn)O,ABACAB3cm,BC5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動,速度為1cm/s.連結(jié)PO并延長交BC于點(diǎn)Q,設(shè)運(yùn)動時間為t(0t5)

(1)當(dāng)t為何值時,四邊形ABQP是平行四邊形?

(2)設(shè)四邊形OQCD的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;

(3)是否存在某一時刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.

  備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點(diǎn)MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是

ADBAC的平分線;②∠ADC=60°點(diǎn)DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是佳佳往小姨家打長途電話的幾次收費(fèi)標(biāo)準(zhǔn)記錄:

回答下列問題:

時間(分)

1

2

3

4

5

6

7

電話費(fèi)(元)

0.6

1.2

1.8

2.4

3.0

3.6

4.2

1)上表反映了變量 之間的關(guān)系, 自變量是 ,因變量是 .

2)幫助佳佳預(yù)測一下,如果她打電話用的時間是10分鐘,需要付 元電話費(fèi);

3)請你寫出通話時間(分鐘)(為正整數(shù))與所要付的電話費(fèi)(元)之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的三個頂點(diǎn)A,OC在坐標(biāo)軸上,矩形的面積為12,對角線AC所在直線的解析式為ykx4kk≠0).

1)求A,C的坐標(biāo);

2)若DAC中點(diǎn),過D的直線交y軸負(fù)半軸于E,交BCF,且OE1,求直線EF的解析式;

3)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)G,使以CD,FG為頂點(diǎn)的四邊形為平行四邊形,若存在,請直接寫出點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

同步練習(xí)冊答案