12.已知$\sqrt{x+6}$+$\sqrt{y-5}$=0,求xy的值.

分析 根據(jù)非負數(shù)的性質(zhì)列出方程求出x、y的值,代入所求代數(shù)式計算即可.

解答 解:∵$\sqrt{x+6}$+$\sqrt{y-5}$=0,
∴x+6=0,y-5=0,
∴x=-6,y=5,
∴xy=-30.

點評 本題考查了非負數(shù)的性質(zhì):幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

2.已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(2,a),求:
(1)a的值.
(2)k、b的值.
(3)這兩個函數(shù)圖象與x軸所圍成的三角形面積.
(4)這兩個函數(shù)圖象與y軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.已知x2-xy-2y2=0.且x>0,y>0,求$\frac{x+y}{x-y}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.解方程:4x2+2x-1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.若α<60°,且sin(60°-α)=$\frac{4}{5}$,則cos(30°+α)=$\frac{4}{5}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

17.長方形的長寬之比為3:2,且面積為S,則寬為$\frac{\sqrt{6S}}{3}$.(用含s的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.閱讀材料:方程$\frac{1}{x+1}$-$\frac{1}{x}$=$\frac{1}{x-2}$-$\frac{1}{x-3}$的解為x=1,方程$\frac{1}{x}$-$\frac{1}{x-1}$=$\frac{1}{x-3}$-$\frac{1}{x-4}$的解為x=2,方程$\frac{1}{x-1}$-$\frac{1}{x-2}$=$\frac{1}{x-4}$-$\frac{1}{x-5}$的解為x=3,…,則方程$\frac{1}{x-5}$-$\frac{1}{x-6}$=$\frac{1}{x-8}$-$\frac{1}{x-9}$的解是(  )
A.x=5B.x=6C.x=7D.x=9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

11.在空中,自地面算起,每升高1千米,氣溫下降若干度(℃).某地空中氣溫t(℃)與高度h(千米)間的函數(shù)的圖象如圖所示.觀察圖象可知:該地面高度h>4千米時,氣溫低于0℃.t關(guān)于h的函數(shù)解析式為t=-6h+24.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.乘法公式的探究與應(yīng)用:

(1)如圖甲,邊長為a的大正方形中有一個邊長為b的小正方形,請你寫出陰影部分面積是a2-b2(寫成兩數(shù)平方差的形式)
(2)小穎將陰影部分裁下來,重新拼成一個長方形,如圖乙,則長方形的長是a+b,寬是a-b,面積是(a+b)(a-b)(寫成多項式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式(a+b)(a-b)=a2-b2(用式子表達)
(4)運用你所得到的公式計算:10.3×9.7.

查看答案和解析>>

同步練習冊答案