如果的一個解,那么這個方程組的另一個解是

[  ]

A.
B.
C.
D.
答案:C
解析:

是方程的一個解

∴代入方程得:m=1,n=-6

∴有

解這個方程組得:x=3,y=-2


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、如果一個方程的解都能滿足另一個方程,那么,這兩個方程( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請先閱讀例題的解答過程,然后再解答:
代數(shù)第三冊在解方程3x(x+2)=5(x+2)時,先將方程變形為3x(x+2)-5(x+2)=0,這個方程左邊可以分解成兩個一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個因式的積等于0,那么這兩個因式中至少有一個等于0;反過來,如果兩個因式有一個等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=
5
3

根據(jù)上面解一元二次方程的過程,王力推測:a﹒b>0,則有
a>0
b>0
a<0
b<0
,請判斷王力的推測是否正確?若正確,請你求出不等式
5x-1
2x-3
>0的解集,如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河池)請在圖中補全坐標系及缺失的部分,并在橫線上寫恰當?shù)膬?nèi)容.圖中各點坐標如下:A(1,0),B(6,0),C(1,3),D(6,2).線段AB上有一點M,使△ACM∽△BDM,且相似比不等于1.求出點M的坐標并證明你的結(jié)論.
解:M(
4
4
0
0

證明:∵CA⊥AB,DB⊥AB
∴∠CAM=∠DBM=
90
90
度.
∵CA=AM=3,DB=BM=2
∴∠ACM=∠AMC(
等邊對等角
等邊對等角
),∠BDM=∠BMD(同理),
∴∠ACM=
1
2
(180°-
90°
90°
)=45°.∠BDM=45°(同理).
∴∠ACM=∠BDM
在△ACM與△BDM中,
∠CAM=∠DBM
_(______)_

∴△ACM∽△BDM(如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀與證明:在一個三角形中,如果有兩個角相等,那么這兩個角所對的邊也相等.如圖①,在△ABC中,如果∠B=∠C,那么AB=AC,這一結(jié)論可以說明如下:
解:過點A作AD⊥BC于D,則∠ADB=∠ADC=90°,在△ABD和△ACD中
∠B=∠C,∠ADB=∠ADC,AD=AD
∴△ABD≌△ACD
∴AB=AC
請你仿照上述方法在圖②中再選一種方法說明以上結(jié)論.
操作:如圖③,點O為線段MN的中點,直線PQ與MN相交于點O,過點M、N作一組平行線分別與PQ交于點M′、N′,則線段MM′一定等腰NN′.想一想,為什么?
根據(jù)上述閱讀與證明的結(jié)論以及操作得到的經(jīng)驗完成下列探究活動.探究:如圖④,在四邊形ABCD中,AB∥DC,E為BC邊的中點,∠BAE=∠EAF,AF與DC的延長線相交于點F.試探究線段AB與AF、CF之間的等量關系,并說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線AB∥CD,直線EF與AB、CD分別相交于點E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點P是平面內(nèi)的一個動點,連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關系:
①當點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;
請閱讀下面的解答過程,并填空(理由或數(shù)學式).
解:如圖2,過點P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當點P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°

③當點P在圖4的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

同步練習冊答案