【題目】如圖,是一個棱長為a的正方體中挖去一個棱長為b的小正方體(a>b)

(1)如圖①所示的幾何體的體積是_______.

(2)用另一種方法表示圖①的體積:把圖①分成如圖②所示的三塊長方體,將這三塊長方體的體積相加后得到的多項式進(jìn)行因式分解. 比較這兩種方法,可以得出一個代數(shù)恒等式____________________.

【答案】; .

【解析】

1)由大正方體的體積減去小正方體的體積可得;

2)根據(jù)幾何體體積的不同表示方法可得:(a-b)(a2+ab+b2=a3-b3.

1)由題意可得:a3-b3

故答案為:a3-b3

2)根據(jù)幾何體體積的不同表示方法可得:(a-b)(a2+ab+b2=a3-b3

故答案為:(a-b)(a2+ab+b2=a3-b3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個頂點分別為A﹣1,2)、B2,1)、C4,5).

1)畫出ABC關(guān)于x對稱的A1B1C1;

2)以原點O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(2,2),反比例函數(shù)x0k≠0)的圖像經(jīng)過線段BC的中點D.

1)求k的值;

2)若點P(x,y)在該反比例函數(shù)的圖像上運動(不與點D重合),過點PPRy軸于點R,PQBC所在直線于點Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進(jìn)價分別為200,170元的A,B兩種型號的電風(fēng)扇表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進(jìn)價、售價均保持不變,利潤=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號的電風(fēng)扇的銷售單價.

(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30A種型號的電風(fēng)扇最多能采購多少臺?

(3)(2)的條件下超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角板按不同位置擺放,∠α與∠β互余的是_____,∠α與∠β互補(bǔ)的是______,∠α與∠β相等的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從數(shù)軸上表示+2的點開始移動,第1次向左移動1個單位,第2次向右移動2個單位;第3次向左移動3個單位,第4次向右移動4個單位;第5次向左移動5個單位……

1)寫出第7次移動后這個點在數(shù)軸上表示的數(shù)為 ;

2)直接寫出第次移動后這個點在數(shù)軸上表示的數(shù)為

3)如果第次移動后這個點在數(shù)軸上表示的數(shù)為56,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)材料1:一般地,n個相同因數(shù)a相乘: 記為 ,此時,3叫做以2為底的8的對數(shù),記為log28(即log28=3).那么,log39=________,=________;

(2)材料2:新規(guī)定一種運算法則:自然數(shù)1n的連乘積用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在這種規(guī)定下,請你解決下列問題:

5!=________

②已知x為整數(shù),求出滿足該等式的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某長方形廣場的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長方形長為a米,寬為b米.

(1)請式表示廣場空地的面積;

(2)若長方形的長為300米,寬為200米,圓形的半徑為10米,計算廣場空地的面積(計算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:以直線AB上一點O為端點作射線OM、ON,將一個直角三角形的直角頂點放在O(COD=90°).

(1)如圖1,直角三角板COD的邊OD放在射線OB上,OM平分∠AOC,ONOB重合,則∠MON=_°;

(2)直角三角板COD繞點O旋轉(zhuǎn)到如圖2的位置,OM平分∠AOCON平分∠BOD,求∠MON的度數(shù)。

(3)直角三角板COD繞點O旋轉(zhuǎn)到如圖3的位置,OM平分∠ AOC ,ON平分∠BOD,猜想∠MON的度數(shù),并說明理由。

查看答案和解析>>

同步練習(xí)冊答案