【題目】兩人要去某風景區(qū)游玩,每天某一時段開往該風景區(qū)有三輛汽車(票價相同),但是他們不知道這些車的舒適程度,也不知道汽車開過來的順序.兩人采用了不同的乘車方案:甲無論如何總是上開來的第一輛車.而乙則是先觀察后上車,當第一輛車開來時,他不上車,而是仔細觀察車的舒適狀況.如果第二輛車的狀況比第一輛好,他就上第二輛車;如果第二輛不比第一輛好,他就上第三輛車.如果把這三輛車的舒適程度分為上、中、下三等,請嘗試解決下面的問題:請用樹狀圖或列表法分析,甲、乙兩人采用的方案,哪一種方案使自己乘坐上等車的可能性大.
【答案】乙采取的方案乘坐上等車的可能性大
【解析】
利用列舉法展示所有6種等可能的結果;然后利用列表法展示甲乙乘車的所有結果,然后計算他們乘坐上等車的概率,再比較概率的大。
解:三輛車開來的先后順序有6種可能:
(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);
由于不知道任何信息,所以只能假定6種順序出現(xiàn)的可能性相同.我們來研究在各種可能性的順序之下,甲、乙二人分別會上哪一輛汽車:
順序 | 甲 | 乙 |
上、中、下 | 上 | 下 |
上、下、中 | 上 | 中 |
中、上、下 | 中 | 上 |
中、下、上 | 中 | 上 |
下、上、中 | 下 | 上 |
下、中、上 | 下 | 中 |
于是不難得出,甲乘上等車的概率是;而乙乘上等車的概率是.
∴乙采取的方案乘坐上等車的可能性大.
科目:初中數學 來源: 題型:
【題目】已知點A在x軸負半軸上,點B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點A的坐標;
(2)點E在y軸負半軸上,直線EC⊥AB,交線段AB于點C,交x軸于點D,S△DOE=16.若反比例函數y=的圖象經過點C,求k的值;
(3)在(2)條件下,點M是DO中點,點N,P,Q在直線BD或y軸上,是否存在點P,使四邊形MNPQ是矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OABC的邊OA在x軸上,AC與OB交于點D (8,4),反比例函數y=的圖象經過點D.若將菱形OABC向左平移n個單位,使點C落在該反比例函數圖象上,則n的值為 2 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于點A(4,﹣5).
(1)如圖,過點A分別向x軸、y軸作垂線,垂足分別為B、C,得到矩形ABOC,且拋物線經過點C.
①求拋物線的解析式.
②將拋物線沿直線x=m(2>m>0)翻折,分別交線段OB、AC于D,E兩點.若直線DE剛好平分矩形ABOC的面積,求m的值.
(2)將拋物線旋轉180°,使點A的對應點為A1(m﹣2,n﹣4),其中m≤2.若旋轉后的拋物線仍然經過點A,求旋轉后的拋物線頂點所能達到最低點時的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們將在直角坐標系中圓心坐標和半徑均為整數的圓稱為“整圓”.如圖,直線l:y=kx+4與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數是( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角形的直角頂點在軸的正半軸上,,將繞頂點順時針旋轉至,使點落在雙曲線的圖象上,則________,該雙曲線的函數解析式為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,∠ABC=52°,BC交⊙O于點D,E是AB上一點,延長DE交⊙O于點F.
(Ⅰ)如圖①,連接BF,求∠C和∠DFB的大小;
(Ⅱ)如圖②,當DB=DE時,求∠OFD的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,矩形的頂點(1,0),(0,2),點在第一象限,∥軸,若函數=的圖象經過矩形的對角線的交點,則的值為( )
A.4B.5C.8D.10
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com