【題目】已知兩直線l1,l2分別經(jīng)過點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y正半軸的點(diǎn)C時(shí),恰好有l1⊥l2,經(jīng)過點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l2交于點(diǎn)K,如圖所示.
(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對(duì)稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請(qǐng)說明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請(qǐng)找出使△MCK為等腰三角形的點(diǎn)M,簡(jiǎn)述理由,并寫出點(diǎn)M的坐標(biāo).
【答案】(1)拋物線的函數(shù)解析式為;(2)截得三條線段的數(shù)量關(guān)系為KD=DE=EF.理由見解析;(3)當(dāng)點(diǎn)M的坐標(biāo)分別為(﹣2,),(﹣1,)時(shí),△MCK為等腰三角形.
【解析】
解:(1)∵l1⊥l2,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
又∠ACO+∠CAO=90°,
∴∠BCO=∠CAO,又∠COA=∠BOC=90°
∴△BOC∽△COA,
∴ ,
即,
∴,
∴點(diǎn)C的坐標(biāo)是(0,),
由題意,可設(shè)拋物線的函數(shù)解析式為,
把A(1,0),B(﹣3,0)的坐標(biāo)分別代入,
得 ,
解這個(gè)方程組,得,
∴拋物線的函數(shù)解析式為.
(2)截得三條線段的數(shù)量關(guān)系為KD=DE=EF.
理由如下:
可求得直線l1的解析式為,直線l2的解析式為,
拋物線的對(duì)稱軸為直線x=-1,
由此可求得點(diǎn)K的坐標(biāo)為(﹣1,),
點(diǎn)D的坐標(biāo)為(﹣1,),點(diǎn)E的坐標(biāo)為(﹣1,),點(diǎn)F的坐標(biāo)為(﹣1,0),
∴KD=,DE=,EF=,
∴KD=DE=EF.
(3)當(dāng)點(diǎn)M的坐標(biāo)分別為(﹣2,),(﹣1,)時(shí),△MCK為等腰三角形.
理由如下:
(i)連接BK,交拋物線于點(diǎn)G,易知點(diǎn)G的坐標(biāo)為(﹣2,),
又∵點(diǎn)C的坐標(biāo)為(0,),則GC∥AB,
∵可求得AB=BK=4,且∠ABK=60°,即△ABK為正三角形,
∴△CGK為正三角形
∴當(dāng)l2與拋物線交于點(diǎn)G,即l2∥AB時(shí),符合題意,此時(shí)點(diǎn)M1的坐標(biāo)為(﹣2,),
(ii)連接CD,由KD=,CK=CG=2,∠CKD=30°,易知△KDC為等腰三角形,
∴當(dāng)l2過拋物線頂點(diǎn)D時(shí),符合題意,此時(shí)點(diǎn)M2坐標(biāo)為(﹣1,),
(iii)當(dāng)點(diǎn)M在拋物線對(duì)稱軸右邊時(shí),只有點(diǎn)M與點(diǎn)A重合時(shí),滿足CM=CK,
但點(diǎn)A、C、K在同一直線上,不能構(gòu)成三角形,
綜上所述,當(dāng)點(diǎn)M的坐標(biāo)分別為(﹣2,),(﹣1,)時(shí),△MCK為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過A(3,18)和B(﹣2,8)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象只有一個(gè)交點(diǎn),求交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在校園藝術(shù)節(jié)期間舉行學(xué)生書畫大賽活動(dòng),準(zhǔn)備購(gòu)買甲、乙兩種文具,獎(jiǎng)勵(lì)在活動(dòng)中表現(xiàn)優(yōu)秀的學(xué)生.已知購(gòu)買2個(gè)甲種文具、1個(gè)乙種文具共需花費(fèi)35元;購(gòu)買1個(gè)甲種文具、3個(gè)乙種文具共需花費(fèi)30元.
(1)求購(gòu)買一個(gè)甲種文具、一個(gè)乙種文具各需多少元?
(2)若學(xué)校計(jì)劃購(gòu)買這兩種文具共120個(gè),投入資金不少于95元又不多于1000元,問有多少種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā),設(shè)甲與A地相距y甲(km),乙與A地相距y乙(km),甲離開A地的時(shí)間為x(h),y甲,y乙與x之間的函數(shù)圖象如圖所示.
(1)甲的速度是 km/h;
(2)當(dāng)1≤x≤5時(shí),求y乙關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)乙與A地相距240km時(shí),直接寫出甲與A地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作技能考查的備考情況,隨機(jī)抽取該年級(jí)部分學(xué)生進(jìn)行了一次測(cè)試,并根據(jù)中考標(biāo)準(zhǔn)按測(cè)試成績(jī)分成A、B、C、D四個(gè)等級(jí),繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)本次抽取參加測(cè)試的學(xué)生為_____人,扇形統(tǒng)計(jì)圖中A等級(jí)所對(duì)的圓心角是____度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300人,請(qǐng)估計(jì)該校九年級(jí)學(xué)生物理實(shí)驗(yàn)操作成績(jī)?yōu)?/span>C等級(jí)的有____人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)網(wǎng)站針對(duì)疫情停課不停學(xué)推出了套餐優(yōu)惠服務(wù):已知購(gòu)買2個(gè)學(xué)習(xí)賬號(hào)和1個(gè)錯(cuò)題伴印設(shè)備需要2700元,購(gòu)買3個(gè)學(xué)習(xí)賬號(hào)和2個(gè)錯(cuò)題伴印設(shè)備需要4800元.
(1)求1個(gè)學(xué)習(xí)賬號(hào)和1個(gè)錯(cuò)題伴印設(shè)備的單價(jià)各是多少元?
(2)若某學(xué)習(xí)小組準(zhǔn)備購(gòu)買賬號(hào)和錯(cuò)題伴印設(shè)備共45個(gè),且要求伴印設(shè)備不低于賬號(hào)數(shù)量的,請(qǐng)問如何購(gòu)買才能使得總費(fèi)用最低,最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計(jì)繪制出2017年“五一”長(zhǎng)假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客 萬人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長(zhǎng)趨勢(shì),預(yù)計(jì)2018年“五一”節(jié)將有80萬游客選擇該市旅游,請(qǐng)估計(jì)有多少萬人會(huì)選擇去E景點(diǎn)旅游?
(3)甲、乙兩個(gè)旅行團(tuán)在A、B、D三個(gè)景點(diǎn)中,同時(shí)選擇去同一景點(diǎn)的概率是多少?請(qǐng)用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹BC的高度,他在點(diǎn)A測(cè)得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為1:2.求大樹BC的高度約為多少米?(≈1.732,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由特殊到一般、類比、轉(zhuǎn)化是數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到的思想方法,下面是對(duì)一道幾何題進(jìn)行變式探究的思路,請(qǐng)你運(yùn)用上述思想方法完成探究任務(wù).
問題情境:在四邊形中,是對(duì)角線,為邊上一點(diǎn),連接.以為旋轉(zhuǎn)中心,將線段順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角與相等,得到線段,連接.
(1)特例如圖1,若四邊形是正方形,則與位置關(guān)系是_________.此時(shí)可以過點(diǎn)作的平行線來對(duì)結(jié)論進(jìn)行證明(這里不要求證明)
(2)拓展探究:如圖2,若四邊形是菱形,當(dāng)時(shí),求的度數(shù);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com