【題目】某校在校園藝術(shù)節(jié)期間舉行學(xué)生書畫大賽活動(dòng),準(zhǔn)備購(gòu)買甲、乙兩種文具,獎(jiǎng)勵(lì)在活動(dòng)中表現(xiàn)優(yōu)秀的學(xué)生.已知購(gòu)買2個(gè)甲種文具、1個(gè)乙種文具共需花費(fèi)35元;購(gòu)買1個(gè)甲種文具、3個(gè)乙種文具共需花費(fèi)30元.

1)求購(gòu)買一個(gè)甲種文具、一個(gè)乙種文具各需多少元?

2)若學(xué)校計(jì)劃購(gòu)買這兩種文具共120個(gè),投入資金不少于95元又不多于1000元,問有多少種購(gòu)買方案?

【答案】1)購(gòu)買一個(gè)甲種文具15元,一個(gè)乙種文具5元;(2)有5種購(gòu)買方案.

【解析】

1)根據(jù)題意列出方程,求解即可;

2)根據(jù)已知列出不等式,求解即可.

解:(1)設(shè)購(gòu)買一個(gè)甲種文具a元,一個(gè)乙種文具b元,由題意得:

解得

答:購(gòu)買一個(gè)甲種文具15元,一個(gè)乙種文具5元;

2)根據(jù)題意得:

955≤15x+5120x≤1000

解得35.5≤x≤40,

x是整數(shù),

x36,3738,39,40

∴有5種購(gòu)買方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)在直線上,過點(diǎn)軸于點(diǎn),作等腰直角三角形 (與原點(diǎn)重合),再以為腰作等腰直角三角形,以為腰作等腰直角三角形,按照這樣的規(guī)律進(jìn)行下去,那么的坐標(biāo)為( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號(hào),此時(shí)B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時(shí)又位于B船的北偏東78°方向.

(1)求ABC的度數(shù);

(2)A船以每小時(shí)30海里的速度前去救援,問多長(zhǎng)時(shí)間能到出事地點(diǎn).(結(jié)果精確到0.01小時(shí)).

(參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,ABC=60°,PQ是對(duì)角線BD上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿BD方向以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為B;點(diǎn)Q從點(diǎn)B出發(fā)沿著BD的方向以2cm/s的速度向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)終點(diǎn)為D.兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為xs),以A、QC、P為頂點(diǎn)的圖形面積為ycm2),yx的函數(shù)圖像如圖所示,根據(jù)圖像回答下列問題:

1BD= a= ;

2)當(dāng)x為何值時(shí),以A、QC、P為頂點(diǎn)的圖形面積為4cm2

3)在整個(gè)運(yùn)動(dòng)的過程中,若AQP為直角三角形,請(qǐng)直接寫出符合條件的所有x的值:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,CAB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CDOB于點(diǎn)D,若點(diǎn)C,D都在雙曲線y上(k0,x0),則k的值為( 。

A. 25B. 18 C. 9D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PQ、PB、QCO的切線,切點(diǎn)分別為A、B、C,點(diǎn)D上,若D100°,則PQ的度數(shù)之和是(

A.160°B.140°C.120°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)EBC邊上一動(dòng)點(diǎn),連接AE,沿AE將△ABE翻折得△AGE,連接DG,作△AGD的外接⊙O,⊙OAE于點(diǎn)F,連接FG、FD

1)求證∠AGD=∠EFG;

2)求證△ADF∽△EGF;

3)若AB3,BE1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1,l2分別經(jīng)過點(diǎn)A10),點(diǎn)B(﹣3,0),并且當(dāng)兩直線同時(shí)相交于y正半軸的點(diǎn)C時(shí),恰好有l1l2,經(jīng)過點(diǎn)A、BC的拋物線的對(duì)稱軸與直線l2交于點(diǎn)K,如圖所示.

1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;

2)拋物線的對(duì)稱軸被直線l1,拋物線,直線l2x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請(qǐng)說明理由;

3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請(qǐng)找出使MCK為等腰三角形的點(diǎn)M,簡(jiǎn)述理由,并寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、是直線與反比例函數(shù)圖象的兩個(gè)交點(diǎn),軸于點(diǎn)C,己知點(diǎn)D0,1),連接ADBD、BC,

1)求反比例函數(shù)和直線AB的表達(dá)式;

2)根據(jù)函數(shù)圖象直接寫出當(dāng)時(shí)不等式的解集;

3)設(shè)△ABC和△ABD的面積分別為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案