【題目】如圖,在菱形ABCD中,ABC=60°,PQ是對角線BD上的兩個動點(diǎn),點(diǎn)P從點(diǎn)D出發(fā)沿BD方向以1cm/s的速度向點(diǎn)B運(yùn)動,運(yùn)動終點(diǎn)為B;點(diǎn)Q從點(diǎn)B出發(fā)沿著BD的方向以2cm/s的速度向點(diǎn)D運(yùn)動,運(yùn)動終點(diǎn)為D.兩點(diǎn)同時出發(fā),設(shè)運(yùn)動時間為xs),以A、Q、CP為頂點(diǎn)的圖形面積為ycm2),yx的函數(shù)圖像如圖所示,根據(jù)圖像回答下列問題:

1BD= ,a= ;

2)當(dāng)x為何值時,以A、Q、C、P為頂點(diǎn)的圖形面積為4cm2?

3)在整個運(yùn)動的過程中,若AQP為直角三角形,請直接寫出符合條件的所有x的值:.

【答案】16,;(2;(3,3,4

【解析】

1)如圖①中,連接于點(diǎn).由題意:點(diǎn)的實(shí)際意義表示時,點(diǎn)運(yùn)動到點(diǎn),由此求出即可解決問題;

2)圖②求出直線,直線的解析式即可解決問題;

3)分三種情況討論:當(dāng)∠AQP=90°,∠APQ=90-°,∠QAP=90°時,求解即可.

解:(1)如圖①中,連接于點(diǎn)

由題意:點(diǎn)的實(shí)際意義表示時,點(diǎn)運(yùn)動到點(diǎn),

四邊形是菱形,,

,,

,

故答案為:6;

2)設(shè)秒后,相遇.則,

,

直線的解析式為:,

當(dāng)時,

,,,

直線的解析式為,

當(dāng)時,,

綜上所述,滿足條件的的值為

3)滿足條件的的值為3,4

AQP為直角三角形,有三種情況:

I.當(dāng)∠AQP=90°時,點(diǎn)運(yùn)動到BD的中點(diǎn)(對角線的交點(diǎn)),

,

II.當(dāng)∠APQ=90°時,點(diǎn)運(yùn)動到BD的中點(diǎn)(對角線的交點(diǎn)),

,

III.當(dāng)∠PAQ=90°時,有,

,

當(dāng)時,,

,解得: (不合題意舍去),

當(dāng)時,此時已經(jīng)到達(dá)終點(diǎn),所以,,此時,

,解得:;

綜上所述,滿足條件的的值為,3,4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的兩條對角線相交于點(diǎn)軸,垂足為點(diǎn)正比例函數(shù)的圖像與反比例函數(shù)的圖像相交于兩點(diǎn).

1)求正比例函數(shù)和反比例函數(shù)的解析式;

2)求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)ykx+bk≠0)的圖象經(jīng)過A3,18)和B(﹣28)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)若一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)ym≠0)的圖象只有一個交點(diǎn),求交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),頂點(diǎn)坐標(biāo),與軸的交點(diǎn)在,之間(包含端點(diǎn)),則下列結(jié)論:①;②;③對于任意實(shí)數(shù)總成立;④關(guān)于的方程有兩個不相等的實(shí)數(shù)根.其中結(jié)論正確的個數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,

1)如圖.分別過兩點(diǎn)作經(jīng)過點(diǎn)的直線的垂線,垂足分別為、,求證:

2)如圖,是邊上一點(diǎn),,,求的值.

3)如圖,是邊延長線上一點(diǎn),,,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓是等邊的外接圓,延長,使,連交圓,點(diǎn)邊上,且,延長至交

1)求證:

2)求證:是圓的切線;

3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校園藝術(shù)節(jié)期間舉行學(xué)生書畫大賽活動,準(zhǔn)備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的學(xué)生.已知購買2個甲種文具、1個乙種文具共需花費(fèi)35元;購買1個甲種文具、3個乙種文具共需花費(fèi)30元.

1)求購買一個甲種文具、一個乙種文具各需多少元?

2)若學(xué)校計劃購買這兩種文具共120個,投入資金不少于95元又不多于1000元,問有多少種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā),設(shè)甲與A地相距ykm),乙與A地相距ykm),甲離開A地的時間為xh),yyx之間的函數(shù)圖象如圖所示.

1)甲的速度是   km/h;

2)當(dāng)1≤x≤5時,求y關(guān)于x的函數(shù)關(guān)系式;

3)當(dāng)乙與A地相距240km時,直接寫出甲與A地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為12.求大樹BC的高度約為多少米?(≈1.732,結(jié)果精確到0.1

查看答案和解析>>

同步練習(xí)冊答案