【題目】如圖所示,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列各題:

1若從中抽出2張卡片,且這2個數(shù)字的差最小,應(yīng)如何抽?最小值是多少?

2若從中抽出2張卡片,且這2個數(shù)字的積最大,應(yīng)如何抽?最小值是多少?

3若從中抽出4張卡片,運用加、減、乘、除、乘方、括號等運算符號,使得結(jié)果為24.請寫出運算式.(只需寫出一種)

【答案】1)抽取-86,最小值是-8-6=-14;(2抽取-6-8,最大值是(-4×-8=32;答案不唯一.

【解析】試題分析: (1)觀察這五個數(shù),要找數(shù)字的差最小的就要找最大的數(shù)和最小的數(shù),所以選-86;

(2)2張卡片上數(shù)字的積最大就要找符號相同且絕對值最大的數(shù),所以選就要選-6-8;

(3)從中取出4張卡片,用學(xué)過的運算方法,使結(jié)果為24,這就不唯一,用加減乘除只要答數(shù)是24即可,比如抽取3-4,6,-8,結(jié)果為(-8+6×3×-4=-2×-12=24.

試題解析:

1)抽取-86,它們的差最小,最小值是-8-6=-14;

(2)抽取-6-8,它們的積最大,最大值是(-4×-8=32;

(3)本題答案不唯一,如抽取3,-4,6,-8,結(jié)果為(-8+6×3×-4=-2×-12=24.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的高BD,CE相交于點O.請你添加一個條件,使BD=CE.你所添加的條件是________.(僅添加一對相等的線段或一對相等的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個三角形中,一定全等的是()

A. 兩個等邊三角形

B. 有一個角是,腰相等的兩個等腰三角形

C. 有一條邊相等,有一個內(nèi)角相等的兩個等腰三角形

D. 有一個角是,底相等的兩個等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,OA=OB,動點C從點O出發(fā),沿射線OB方向移動,以AC為邊在右側(cè)作等邊ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。

A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店以每箱60元新進一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標準,超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負數(shù),將稱重記錄如下:

1)求30箱蘋果的總重量

2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣3x+3x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c與直線y=c分別交y軸的正半軸于點C和第一象限的點P,連接PB,得PCB≌△BOA(O為坐標原點).若拋物線與x軸正半軸交點為點F,設(shè)M是點C,F(xiàn)間拋物線上的一點(包括端點),其橫坐標為m.

(1)直接寫出點P的坐標和拋物線的解析式;

(2)當m為何值時,MAB面積S取得最小值和最大值?請說明理由;

(3)求滿足∠MPO=POA的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F.

(1)證明:四邊形CDEF是平行四邊形;

(2)若四邊形CDEF的周長是25cm,AC的長為5cm,求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對稱軸是x ;

2若該二次函數(shù)的圖象開口向下, 的最大值是2求當, 的最小值;

3)若對于該拋物線上的兩點, , ,均滿足請結(jié)合圖象,直接寫出的最大值

查看答案和解析>>

同步練習冊答案