【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)

請用代數(shù)式表示裝飾物的面積:________,用代數(shù)式表示窗戶能射進陽光的面積是______(結(jié)果保留π)

⑵當a=,b=1時,求窗戶能射進陽光的面積是多少?(取π≈3

⑶小亮又設(shè)計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進陽光的面積是否更大?如果更大,那么大多少?

【答案】1, ;(2;(3)更大了,

【解析】試題分析:

(1)易知裝飾物是一個半圓的面積π2=b2;射進陽光的面積=長方形面積-裝飾物面積;

a=b=1代入ab-b2,化簡即可;

(3)先求出圖2中能射進陽光的面積,再減去ab-b2即可.

試題解析:1π2=b2, ab-b2.

(2)ab-b2=×1-×1

=-

=.

(3)更大了,

窗簾的面積:π2=b2

ab-b2-ab-b2=b2-b2=b2.

故答案為: (1). b2, ab-b2 (2). , (3). 更大了, b2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖正六邊形ABCDEF是邊長為2 cm的螺母,PFA延長線上的點,A,P之間拉一條長為12 cm的無伸縮性細線,一端固定在點A,握住另一端點P拉直細線,把它全部緊緊纏繞在螺母上(纏繞時螺母不動),則點P運動的路徑長為( )

A. 13π cm B. 14π cm C. 15π cm D. 16π cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,∠ABC60°P是射線BD上一動點,以AP為邊向右側(cè)作等邊APE,連接CE

1)如圖1,當點P在菱形ABCD內(nèi)部時,則BPCE的數(shù)量關(guān)系是   ,CEAD的位置關(guān)系是   

2)如圖2,當點P在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;

3)如圖2,連接BE,若AB2,BE2,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD中,E、F分別是正方形AD、CD邊上的點,且∠EBF=45°,對角線ACBE,BFM,N,對于以下結(jié)論,正確的是( )①AE+CF=FE△ABE△BCFAM2+CN2=MN2△EFD的周長等于2AB

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,階梯圖的每個臺階上都標著一個數(shù),從下到上的第1個至第4個臺階上依次標著-5、-2、1、9,且任意相鄰四個臺階上數(shù)的和都相等.

1)求第5個臺階上的數(shù)是多少?

2)求從下到上前31個臺階上數(shù)的和;

3)試用含為正整數(shù))的式子表示出數(shù)“1”所在的臺階數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC90°,點B是射線AM上一個動點,點C是射線AN上的一個動點,且線段BC長度不變,點DA關(guān)于直線BC的對稱點,連接AD,若2ADBC,則∠ABD的度數(shù)是____________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O為坐標原點,點A的坐標為(2,3),A的半徑為1,過A作直線l平行于x軸,點Pl上運動.

(1)當點P運動到圓上時,求線段OP的長.

(2)當點P的坐標為(4,3)時,試判斷直線OP與⊙A的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20,每件盈利40.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5,商場平均每天可多售出10.:

(1)若商場每件襯衫降價4,則商場每天可盈利多少元?

(2)若商場平均每天要盈利1200,每件襯衫應(yīng)降價多少元?

(3)要使商場平均每天盈利1600,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+bk≠0)與拋物線y=ax2a≠0)交于A,B兩點,且點A的橫坐標是-2,點B的橫坐標是3,則以下結(jié)論:

拋物線y=ax2a≠0)的圖象的頂點一定是原點;

②x0時,直線y=kx+bk≠0)與拋物線y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長度可以等于5;

④△OAB有可能成為等邊三角形;

-3x2時,ax2+kxb

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

同步練習冊答案