【題目】如圖,∠BAC90°,點B是射線AM上一個動點,點C是射線AN上的一個動點,且線段BC長度不變,點DA關于直線BC的對稱點,連接AD,若2ADBC,則∠ABD的度數(shù)是____________ .

【答案】30°或150°

【解析】

分兩種情況,取BC的中點E,連接AE,DE,依據(jù)直角三角形斜邊上中線的性質,即可得到△ADE是等邊三角形,進而依據(jù)軸對稱的性質得出∠ABD的度數(shù).

解:分兩種情況:

如圖,當ABAC時,取BC的中點E,連接AE,DE,

AE=DE=BC,即BC=2AE=2DE,

又∵BC=2AD,

AD=AE=DE,

∴△ADE是等邊三角形,

∴∠AED=60°,

又∵BC垂直平分AD,

∴∠AEC=30°,

又∵BE=AE,

∴∠ABC=AEC=15°,

∴∠ABD=2ABC=30°;

如圖,當ABAC時,同理可得∠ACD=30°,

又∵∠BAC=BDC=90°,

∴∠ABD=150°,

故答案為:30°或150°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上,根據(jù)圖中提供的信息,下列說法正確的是( 。

A.食堂離小明家24km

B.小明在圖書館呆了20min

C.小明從圖書館回家的平均速度是004km/min

D.圖書館在小明家和食堂之間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.

(1)在如圖所示的坐標系中求拋物線的解析式;

(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達警戒線?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司對一種新型產(chǎn)品的產(chǎn)銷情況進行了營銷調查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場后當年能全部售出且發(fā)現(xiàn)每噸的售價p(單位:萬元)由基礎價與浮動價兩部分組成,其中基礎價是固定不變的,浮動價與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時,所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)

(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;

(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;

(3)當年銷售利潤最大時,每噸的售價是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)

請用代數(shù)式表示裝飾物的面積:________,用代數(shù)式表示窗戶能射進陽光的面積是______(結果保留π)

⑵當a=b=1時,求窗戶能射進陽光的面積是多少?(取π≈3

⑶小亮又設計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進陽光的面積是否更大?如果更大,那么大多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活中的數(shù)學

(1)小明同學在某月的日歷上圈出2×2個數(shù)(如圖),正方形方框內(nèi)的4個數(shù)的和是28,那么這4個數(shù)是 ;

(2)小麗同學在日歷上圈出5個數(shù),呈十字框型(如圖),他們的和是65,則正中間一個數(shù)是 ;

(3)某月有5個星期日,這5個星期日的日期之和為80,則這個月中第一星期日的日期是 號;

(4)有一個數(shù)列每行8個數(shù)成一定規(guī)律排列如圖:

a中方框內(nèi)的9個數(shù)的和是 ;

小剛同學在這個數(shù)列上圈了一個斜框(如圖b),圈出的9個數(shù)的和為522,求正中間的一個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1、x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)x2﹣4x﹣3=0

(2)(x﹣3)2+2x(x﹣3)=0

(3)(x﹣1)2=4

(4)3x2+5(2x+3)=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示.在ABC中,∠ACB=90°,AC=BC,過點C任作一直線PQ,過點A于點M,過點BBNPQ于點N

1)如圖①,當M、NABC的外部時,MN、AMBN有什么關系呢?為什么?

(2)如圖②,當MNABC的內(nèi)部時,(1)中的結論是否仍然成立?若成立,請說明理由;若不成立,請指出MNAMBN之間的數(shù)關系并說明理由.

查看答案和解析>>

同步練習冊答案