【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連接BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)π.
【解析】試題分析: 根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),∠DCB+∠BAD=180°,即可求出
的度數(shù),得出,根據(jù)等角對(duì)等邊即可證明.
求出的度數(shù),根據(jù)弧長(zhǎng)公式計(jì)算即可.
試題解析:
證明:∵四邊形ABCD內(nèi)接于圓O,
∴∠DCB+∠BAD=180°.
∵∠BAD=105°,
∴∠DCB=180°-105°=75°.
∵∠DBC=75°,
∴∠DCB=∠DBC=75°,
∴BD=CD;
(2)∵∠DCB=∠DBC=75°,
∴∠BDC=30°,
由圓周角定理,得的度數(shù)為60°,
故的長(zhǎng)為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A在x正半軸,以點(diǎn)A為圓心作⊙A,點(diǎn)M(4,4)在⊙A上,直線y=﹣x+b與圓相切于點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).
(1)直接寫(xiě)出b的值和點(diǎn)B的坐標(biāo);
(2)求點(diǎn)A的坐標(biāo)和圓的半徑;
(3)若EF切⊙A于點(diǎn)F分別交AB和BC于G、E,且FE⊥BC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)兩位數(shù),十位數(shù)字是,個(gè)位數(shù)字是,總有,我們把十位上的數(shù)與個(gè)位上的數(shù)的平方和叫做這個(gè)兩位數(shù)的“平方和數(shù)”,把十位上的數(shù)與個(gè)位上的數(shù)的平方差叫做“平方差數(shù)”。例如,對(duì)兩位數(shù)43來(lái)說(shuō),,,所以25和7分別是43的“平方和數(shù)”與“平方差數(shù)”。
(1)76的“平方和數(shù)”是_____________,“平萬(wàn)差數(shù)”是____________.
(2)5可以是___________的“平方差數(shù)”.
(3)若一個(gè)數(shù)的“平方和數(shù)”是10,“平方差數(shù)”是8,則這個(gè)數(shù)是______.
(4)若一個(gè)數(shù)的“平方和數(shù)”,與它的“平方差數(shù)”相等,那么這個(gè)數(shù)滿足什么特征?為什么?(寫(xiě)出說(shuō)明過(guò)程)
(5)若一個(gè)數(shù)的“平方差數(shù)”等子它十位上的數(shù)與個(gè)位上的數(shù)差的十倍,此時(shí),我們把它叫做“湊整數(shù)”,請(qǐng)你寫(xiě)出兩個(gè)這樣的湊整數(shù)_____________,__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查中,最適宜采用全面調(diào)查方式(普查)的是( )
A. 對(duì)襄陽(yáng)市中學(xué)生每天課外讀書(shū)所用時(shí)間的調(diào)查
B. 對(duì)全國(guó)中學(xué)生心理健康現(xiàn)狀的調(diào)查
C. 對(duì)七年級(jí)(2)班學(xué)生米跑步成績(jī)的調(diào)查
D. 對(duì)市面某品牌中性筆筆芯使用壽命的調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線y=x+4交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過(guò)A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;
(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A′、B′、M′,過(guò)點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DBC都是邊長(zhǎng)為2的等邊三角形.
(1)以圖1中的某個(gè)點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)△DBC,就能使△DBC與△ABC重合,則滿足題意的點(diǎn)為: (寫(xiě)出符合條件的所有點(diǎn));
(2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)BB1= 時(shí),四邊形ABD1C1為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3.
(1)畫(huà)出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,直接寫(xiě)出;
①當(dāng)函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;
②當(dāng)﹣2<x<2時(shí),函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜的價(jià)格隨季節(jié)變化如下表,根據(jù)表中信息,下列結(jié)論錯(cuò)誤的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
價(jià)格 (元/千克) | 5.00 | 5.50 | 5.00 | 4.80 | 2.00 | 1.50 | 1.00 | 0.90 | 1.50 | 3.00 | 2.50 | 3.50 |
A. 是自變量,是因變量
B. 2月份這種蔬菜價(jià)格最高,為5.50元/千克
C. 2-8月份這種蔬菜價(jià)格一直在下降
D. 8-12月份這種蔬菜價(jià)格一直在上升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為有理數(shù);④非負(fù)數(shù)就是正數(shù);④不僅是有理數(shù),而且是分?jǐn)?shù);⑤是無(wú)限不循環(huán)小數(shù),所以不是有理數(shù);⑥無(wú)限小數(shù)不都是有理數(shù);⑦正數(shù)中沒(méi)有最小的數(shù),負(fù)數(shù)中沒(méi)有最大的數(shù).其中錯(cuò)誤的說(shuō)法的個(gè)數(shù)為( )
A. 7個(gè)B. 6個(gè)C. 5個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com