【題目】平面直角坐標(biāo)系xOy中,對稱軸平行于y軸的拋物線過點A(1,0)、B(3,0)和C(4,6);
(1)求拋物線的表達式;
(2)現(xiàn)將此拋物線先沿x軸方向向右平移6個單位,再沿y軸方向平移k個單位,若所得拋物線與x軸交于點D、E(點D在點E的左邊),且使△ACD∽△AEC(頂點A、C、D依次對應(yīng)頂點A、E、C),試求k的值,并注明方向.
【答案】(1)y=2x2﹣8x+6;(2)向下平移6個單位.
【解析】試題分析:(1)利用待定系數(shù)法直接求出拋物線的解析式;
(2)設(shè)出D,E坐標(biāo),根據(jù)平移,用k表示出平移后的拋物線解析式,利用坐標(biāo)軸上點的特點得出m+n=16,mn=63﹣,進而利用相似三角形得出比例式建立方程即可求出k.
試題解析:解:(1)∵拋物線過點A(1,0)、B(3,0),∴設(shè)拋物線的解析式為y=a(x﹣1)(x﹣3)。
∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴拋物線的解析式為y=2(x﹣1)(x﹣3)=2x2﹣8x+6;
(2)如圖,設(shè)點D(m,0),E(n,0)。
∵A(1,0),∴AD=m﹣1,AE=n﹣1。
由(1)知,拋物線的解析式為y=2x2﹣8x+6=2(x﹣2)2﹣2,∴將此拋物線先沿x軸方向向右平移6個單位,得到拋物線的解析式為y=2(x﹣8)2﹣2,∴再沿y軸方向平移k個單位,得到的拋物線的解析式為y=2(x﹣8)2﹣2﹣k。
令y=0,則2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0。
根據(jù)根與系數(shù)的關(guān)系得:∴m+n=16,mn=63﹣。
∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45。
∵△ACD∽△AEC,∴ ,∴AC2=ADAE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,
∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6個單位.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個點A、B、C,它們可以沿著數(shù)軸左右移動,請回答:
(1)點A、B、C分別表示的數(shù)是______________________。
(2)將點B 向右移動三個單位長度后到達點D,點D表示的數(shù)是_____________。
(3)移動點A到達點E,使B、C、E三點的其中任意一點為連接另外兩點之間線段的中點,請直接寫出所有點A 移動的距離和方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對角線AC、BD相交于點O,點E、F分別從B、C兩點同時出發(fā),以1cm/s的速度沿BC、CD運動,到點C、D時停止運動,設(shè)運動時間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個單位,所得新拋物線與x軸正半軸交于點B,與y軸交于點C,頂點為D.求:(1)點B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點E是AC的一點,連接EB,過點A做AM⊥BE,垂足為M,AM與BD相交于點F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點E在AC的延長線上,AM⊥BE于點M,AM、DB的延長線相交于點F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請僅就圖(2)給出證明;如果不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com