【題目】小亮早晨從家騎車到學(xué)校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關(guān)系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學(xué)校騎車回家用的時間是分鐘.
【答案】63
【解析】解:由圖可得,去校時,上坡路的距離為2000米,所用時間為18分,
∴上坡速度=2000÷18= 米/分,
下坡路的距離是9000﹣2000=7000米,所用時間為20﹣18=2分,
∴下坡速度=7000÷2=3500米/分;
∵去學(xué)校時的上坡回家時變?yōu)橄缕、去學(xué)校時的下坡回家時變?yōu)樯掀拢?/span>
∴小明從學(xué)校騎車回家用的時間是:7000÷ +2000÷3500=63+ =63 分鐘.
所以答案是:63 .
【考點精析】通過靈活運用函數(shù)的圖象,掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應(yīng)的函數(shù)值即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程.在括號內(nèi)的橫線上填空或填上推理依據(jù).
如圖,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求證:AB∥CD
證明:∵AB∥EF
∴∠APE=()
∵EP⊥EQ
∴∠PEQ=()
即∠QEF+∠PEF=90°
∴∠APE+∠QEF=90°
∵∠EQC+∠APE=90°
∴∠EQC=
∴EF∥()
∴AB∥CD()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點E,F(xiàn)在對角線BD上,且BE=DF,求證:
(1)AE=CF;
(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45.
(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球比賽時,守門員大腳開出去的球的高度h隨時間t變化而變化,下列各圖中,能刻畫以上h與t的關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)與y=kx2﹣8x+8的圖象與x軸有交點,則k的取值范圍是( )
A.k<2
B.k<2且k≠0
C.k≤2
D.k≤2且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y=kx-1(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式與點B坐標;
(2)求△AOB的面積;
(3)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y=kx-1(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (2016湖北鄂州第14題)如圖,已知直線 與x軸、y軸相交于P、Q兩點,與y=的圖像相交于A(-2,m)、B(1,n)兩點,連接OA、OB. 給出下列結(jié)論: ①k1k2<0;②m+n=0; ③S△AOP= S△BOQ;④不等式k1x+b>的解集是x<-2或0<x<1,其中正確的結(jié)論的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com