【題目】如圖,點BC、D都在⊙O上,過點CACBDOB延長線于點A,連接CD,且∠CDB=OBD=30°,DB=cm

1)求證:AC是⊙O的切線;

2求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π

【答案】(1)證明見解析;(2)6πcm2

【解析】試題分析:連接BC,ODOC,設OCBD交于點M.(1)求出∠COB的度數(shù),求出∠A的度數(shù),根據(jù)三角形的內角和定理求出∠OCA的度數(shù),根據(jù)切線的判定推出即可;

2)證明△CDM≌△OBM,從而得到S陰影=S扇形BOC

試題解析:如圖,連接BC,OD,OC,設OCBD交于點M

1)根據(jù)圓周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC∵OC為半徑,∴AC⊙O的切線;

2)由(1)知,AC⊙O的切線,∴OC⊥AC∵AC∥BD∴OC⊥BD.由垂徑定理可知,MD=MB=BD=3.在Rt△OBM中,∠COB=60°,OB==6

△CDM△OBM,∴△CDM≌△OBMASA),∴SCDM=SOBM

陰影部分的面積S陰影=S扇形BOC==6πcm2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):

如圖①'在正方形ABCD中,過A點有直線AP,點B關于AP的對稱點為E,連接DE交AP于點F,當∠BAP=20°時,則∠AFD= °;當∠BAP=α°(0<α<45°)時,則∠AFD= °;猜想線段DF, EF, AF之間的數(shù)量關系:DF-EF= AF(填系數(shù));

(2)數(shù)學思考:

如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD= °;線段DF, EF, AF之間的數(shù)量關系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關系并說明理由;

(3)類比探究:

如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD= °;請直接寫出線段DF,EF,AF之間的數(shù)量關系: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料

材料一:對于任意的非零實數(shù)和正實數(shù),如果滿足為整數(shù),則稱kx的一個整商系數(shù),

例如:當時,,則稱的一個整商系數(shù);

時,,則稱的一個整商系數(shù);

時,,則稱的一個整商系數(shù);

給論:一個非零實數(shù)有無數(shù)個整商系數(shù),其中最小的一個整商系數(shù)記為

例如: ,

材料二:對于一元二次方程的兩根,有如下關系:

請根據(jù)材料解決下列問題

若關于的方程:的兩根分別為,且滿足,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸相交于A3,0、B1,0兩點,與y軸相交于點C0,3,點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D

1求D點坐標;

2求二次函數(shù)的解析式;

3根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用三種大小不同的六個正方形和一個缺角的長方形拼成長方形ABCD,其中GH=2cmGK=2cm,設BF=x cm,

1)用含x的代數(shù)式表示CM=_________cm,DM=_________cm.

2)求長方形ABCD的周長(用含有x的代數(shù)式表示),并求x=3時,長方形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期三個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)本次調查中,張老師一共調查了 名同學,其中C類女生有 名,D類男生有 名;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知點A,B的坐標是(a,0),(b,0).a(chǎn),b滿足方程組,C為y軸正半軸上一點,且SABC=6.

(1)求A,B,C三點的坐標;

(2)是否存在點P(t,t),使SPAB=SABC?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,,,是等腰直角三角形,且,把繞點順時針旋轉,得到;把繞點順時針旋轉,得到.依次類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點的坐標為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=(  )

A. 1 B. C. D.

查看答案和解析>>

同步練習冊答案