【題目】如圖,二次函數(shù)的圖象與x軸相交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)求D點(diǎn)坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)值小于二次函數(shù)值的x的取值范圍.
【答案】(-2,3);y=--2x+3;-2<x<1.
【解析】
試題分析:根據(jù)二次函數(shù)的對(duì)稱軸得出點(diǎn)D的坐標(biāo);將函數(shù)解析式設(shè)成交點(diǎn)式,然后將點(diǎn)C代入進(jìn)行求解;根據(jù)圖象得出取值范圍.
試題解析:(1)∵拋物線的對(duì)稱軸是x=﹣1,而C、D關(guān)于直線x=﹣1對(duì)稱,
∴D(﹣2,3);
(2)設(shè)該拋物線的解析式為y=a(x+3)(x﹣1)(a≠0), 把C(0,3)代入,得
3=a(0+3)(0﹣1), 解得 a=﹣1,
所以該拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣﹣2x+3,
即y=﹣x2﹣2x+3;
(3)根據(jù)圖象知,一次函數(shù)值小于二次函數(shù)值的x的取值范圍是:﹣2<x<1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,有一矩形,長(zhǎng),寬軸,軸.點(diǎn)坐標(biāo)為,該矩形邊上有一動(dòng)點(diǎn),沿運(yùn)動(dòng)一周,則點(diǎn)的縱坐標(biāo)與點(diǎn)走過的路程之間的函數(shù)關(guān)系用圖象表示大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅1、紅2),1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】含60°角的菱形A1B1C1B2,A2B2C2B3,A3B3C3B4,…,按如圖的方式放置在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…,和點(diǎn)B1,B2,B3,B4,…,分別在直線y=kx和x軸上.已知B1(2,0),B2(4,0),則點(diǎn)A1的坐標(biāo)是_____;點(diǎn)A3的坐標(biāo)是_____;點(diǎn)An的坐標(biāo)是____(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:AC=BE;
(2)若∠AFC=2∠D,連接AC,BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com