【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊ABy軸于點(diǎn)P,若PA:PB=1:2,則正方形OABC的面積=_____

【答案】10.

【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長(zhǎng)

由題意可得OA=AB設(shè)AP=a,BP=2a,OA=3a,設(shè)點(diǎn)A的坐標(biāo)為(m,),AEx軸于點(diǎn)E

∵∠PAO=OEA=90°,POA+∠AOE=90°,AOE+∠OAE=90°,∴∠POA=OAE,∴△POA∽△OAE,==,解得m=1m=﹣1(舍去)∴點(diǎn)A的坐標(biāo)為(1,3),OA=,∴正方形OABC的面積=OA2=10

故答案為:10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AB3,BC4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來的速度沿AB返回.點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)它們的運(yùn)動(dòng)時(shí)間為tt0)秒.

1)設(shè)CBQ的面積為S,請(qǐng)用含有t的代數(shù)式來表示S;

2)線段PQ的垂直平分線記為直線l,當(dāng)直線l經(jīng)過點(diǎn)C時(shí),求AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青少年是祖國(guó)的未來,增強(qiáng)青少年體質(zhì),促進(jìn)青少年健康成長(zhǎng),是關(guān)系國(guó)家和民族未來的大事,為了響應(yīng)足球進(jìn)校園的號(hào)召,我市某中學(xué)準(zhǔn)備購(gòu)買一批足球,若購(gòu)買2個(gè)A品牌足球和3個(gè)B品牌足球共需340元;購(gòu)買5個(gè)A品牌足球和2個(gè)B品牌足球共需410元.

(1)購(gòu)買一個(gè)A品牌足球,一個(gè)B品牌足球各需多少元?

(2)根據(jù)學(xué)校的實(shí)際情況,需購(gòu)買兩種品牌足球共50個(gè),并且總費(fèi)用不超過3120元,問最多可以購(gòu)買多少個(gè)B品牌足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人以各自的交通工具、相同路線,前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l、l分別表示甲、乙前往目的地所走的路程Skm)隨時(shí)間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時(shí),甲乙相距3km.其中正確的是( 。

A. 只有① B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)PM、N分別和點(diǎn)OB、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)M、N的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過AB兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=kx+b 經(jīng)過點(diǎn)A(﹣,0)和點(diǎn)B(2,5)

(1)求直線l1y軸的交點(diǎn)坐標(biāo);

(2)若點(diǎn)C(a,a+2)與點(diǎn)D在直線l1上,過點(diǎn)D的直線l2x軸正半軸交于點(diǎn) E,當(dāng)AC=CD=CE 時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點(diǎn)EAD的中點(diǎn),連接BE,BF平分∠EBCCD于點(diǎn)F,交AC于點(diǎn)G,將CGF沿直線GF折疊至C′GF,BDC′GF相交于點(diǎn)M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1,若OCBA,AOC=36°,則( 。

A. 點(diǎn)BAO的距離為sin54°

B. 點(diǎn)AOC的距離為sin36°sin54°

C. 點(diǎn)BAO的距離為tan36°

D. 點(diǎn)AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C、EB、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )

A. 80° B. 90° C. 100° D. 108°

查看答案和解析>>

同步練習(xí)冊(cè)答案