【題目】如圖,圓柱形玻璃杯高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜(

A.24B.25C.D.

【答案】B

【解析】

將圓柱形玻璃杯的側(cè)面展開圖為矩形MNPQ,設(shè)點A關(guān)于MQ的對稱點為A′,連接AB,則AB就是螞蟻從外壁處走到內(nèi)壁處的最短距離,再根據(jù)勾股定理,即可求解.

圓柱形玻璃杯的側(cè)面展開圖為矩形MNPQ,則E、F分別是MQ,NP的中點,AM=2cm,BF=3cm,設(shè)點A關(guān)于MQ的對稱點為A′,連接AB,則AB就是螞蟻從外壁處走到內(nèi)壁處的最短距離.過點BBCMN于點C,則BC=ME=24cm,AC=8+2-3=7cm

∴在RtABC中,AB=cm

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,連接上一點,使得連接于點,作的延長線于點

1)求證:

2)若的長.

3)在(2)的條件下,將沿著對折得到的對應(yīng)點為點,連接試求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A,點C在反比例函數(shù)yk0,x0)的圖象上,ABx軸于點BOCAB于點D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解該校初三學(xué)生居家學(xué)習(xí)期間參加網(wǎng)絡(luò)自習(xí)室自主學(xué)習(xí)的情況,隨機抽查了部分學(xué)生在兩周內(nèi)參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)的天數(shù),并用得到的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,回答下列問題.

1)補全條形統(tǒng)計圖.

2)部分學(xué)生在兩周內(nèi)參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)天數(shù)的眾數(shù)為______,中位數(shù)為________;

3)如果該校初三年級約有名學(xué)生,請你估計在這兩周內(nèi)全校初三年級可能有多少名學(xué)生參加“網(wǎng)絡(luò)自習(xí)室”自主學(xué)習(xí)的天數(shù)不少于天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+x+c經(jīng)過A4,0),B1,0)兩點,與y軸交于點C

1)求該拋物線的解析式;

2)在直線AC上方的拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜市場為指導(dǎo)某種蔬菜的生產(chǎn)和銷售,對往年的市場行情和生產(chǎn)情況進行了調(diào)查,提供的信息如下:

信息1:售價和月份滿足一次函數(shù)關(guān)系,如下表所示.

月份

3

6

售價

5

3

信息2:成本和月份滿足二次函數(shù)關(guān)系,并且知道該種蔬菜在6月成本達到最低為1/千克,9月成本為4/千克.

根據(jù)以上信息回答下列問題:

1)在7月,這種蔬菜的成本是多少元每千克?

2)在過去的一年中,某商家平均每天賣出該種蔬菜,則哪個月的利潤最大,最大利潤為多少?(一個月按30天計算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù) yfx)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2

1)若 x1x2,都有 fx1)<fx2),則稱 fx)是增函數(shù);

2)若 x1x2,都有 fx1)>fx2),則稱 fx)是減函數(shù).

例題:證明函數(shù)fx)= x0)是減函數(shù).

證明:設(shè) 0x1x2

fx1)﹣fx2)=

0x1x2

x2x10,x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函數(shù) fx= x0)是減函數(shù).

根據(jù)以上材料,解答下面的問題:

已知函數(shù)

f(﹣1)= +(﹣2)=-1f(﹣2)= +(﹣4)=

1)計算:f(﹣3)= ,f(﹣4)=

2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

3)請仿照例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點A是劣弧BC的中點,點D是優(yōu)弧BC上一點,且sinD,求證:四邊形ABOC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣x+5x軸交于點B,與y軸交于點C.拋物線yx2+bx+c經(jīng)過點B和點C,與x軸交于另一點A,連接AC

1)求拋物線的解析式;

2)若點Q在直線BC上方的拋物線上,連接QCQB,當(dāng)△ABC與△QBC的面積比等于23時,直接寫出點Q的坐標:

3)在(2)的條件下,點Hx軸的負半軸,連接AQ,QH,當(dāng)∠AQH=∠ACB時,直接寫出點H的坐標.

查看答案和解析>>

同步練習(xí)冊答案