【題目】如圖,在矩形中,連接上一點,使得連接于點,作的延長線于點

1)求證:

2)若的長.

3)在(2)的條件下,將沿著對折得到的對應(yīng)點為點,連接試求的周長.

【答案】1)詳見解析;(2;(3的周長

【解析】

1)由矩形的性質(zhì)得∠BCD=FBD,結(jié)合∠BCD=FBD,可得,進(jìn)而即可得到結(jié)論;

2)先證,再證BE=DE=EF,結(jié)合,求出BD的長,從而的BC,EC的長,由,得,即可求解;

3)由折疊的性質(zhì)得QE=1,從而得AE=QE,再證,進(jìn)而即可求解.

1)∵在矩形中,

∴∠BCD=90°,

∴∠BCD=FBD

又∵,

,

,

;

2,

,

又∵,

,

,

,

,

由(1)可知:,

,

,

,

,

,

,即,

解得:;

3沿對折得到,

上,且,

DQ=DC=3,

DE=BE=2

,

BE=DE,

∴∠EBD=EDB

,

=EBD=EDB,

,

的周長:的周長,

的周長

的周長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)如圖1,在中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______

2)類比探究如圖2,在中,,,連接的延長線于點.請判斷的值及的度數(shù),并說明理由;

3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,請直接寫出當(dāng)點與點在同一條直線上時的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、F分別是BC、AC邊的中點,連接DADF,且AD2DF,過點BAD的平行線交FD的延長線于點E

1)求證:四邊形ABED為菱形;

2)若BD6,∠E60°,求四邊形ABEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,李林和王聰兩人在玩轉(zhuǎn)盤游戲時,分別把轉(zhuǎn)盤分成3等份和4等份,并標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)兩轉(zhuǎn)盤停止后,若指針?biāo)竷蓚數(shù)字之和小于4,則李林獲勝;若數(shù)字之和大于4,則王聰獲勝,如果指針落在分割線上,則需要重新轉(zhuǎn)動轉(zhuǎn)盤.

1)用列表法或畫樹狀圖法中的一種方法,求所有可能出現(xiàn)的結(jié)果.

2)該游戲規(guī)則對雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一張矩形紙片進(jìn)行折疊,具體操作過程如下:第一步:先把矩形ABCD對折,折痕為MN,如圖1;第二步:再把B點疊在折痕線MN上,折痕為AE,點BMN上的對應(yīng)點為B',得RtAB'E,如圖2;第三步:沿EB'線折疊得折痕EF,使A點落在EC的延長線上,如圖3.  

利用展開圖4探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校調(diào)查了若干名家長對“初中生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:

1)本次共調(diào)查了   名家長;扇形統(tǒng)計圖中“很贊同”所對應(yīng)的圓心角是   度.已知該校共有1600名家長,則“不贊同”的家長約有   名;請補(bǔ)全條形統(tǒng)計圖;

2)從“不贊同”的五位家長中(兩女三男),隨機(jī)選取兩位家長對全校家長進(jìn)行“學(xué)生使用手機(jī)危害性”的專題講座,請用樹狀圖或列表法求出選中“11女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F為邊BC上兩點,BFCEAEDF

1)求證:△ABE≌△DCF;(2)求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境,某中學(xué)八年級(3班)同學(xué)都積極參加了植樹活動,下面是今年3月份該班同學(xué)植樹情況的扇形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為 ;

2)扇形統(tǒng)計圖中植樹為1株的扇形圓心角的度數(shù)為 ;

3)該班同學(xué)植樹株數(shù)的中位數(shù)是

4)小明以下方法計算出該班同學(xué)平均植樹的株數(shù)是:(1+2+3+4+5÷53(株),根據(jù)你所學(xué)的統(tǒng)計知識

判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為,底面周長為,在杯內(nèi)壁離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜(

A.24B.25C.D.

查看答案和解析>>

同步練習(xí)冊答案