【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,小格的頂點叫格點,在正方形網(wǎng)格的三條不同的實線上各取一個格點,使其中任意兩點不在同一實線上,得到格點ABC

1AC= ABC 三角形;

2)請在下面的正方形網(wǎng)格中各畫出一個格點直角三角形,使其中任意兩點不在同一實線上,并且三個網(wǎng)格中的三角形互不全等.

【答案】15、直角;(2)見詳解

【解析】

1)根據(jù)勾股定理求出AC的長,根據(jù)勾股定理的逆定理即可得出答案;

2)按照要求作圖:①直角三角形;②使其中任意兩點不在同一實線上;③三個網(wǎng)格中的三角形互不全等.

解:(1)已知小正方形邊長為1,則AC是底為3,高為4的直角三角形的斜邊,

根據(jù)勾股定理得:;

根據(jù)圖像可知,AB是底為1,高為2的直角三角形的斜邊,BC是底為2,高為4的直角三角形的斜邊,

根據(jù)勾股定理得:

由此可得,

根據(jù)勾股定理的逆定理得,ABC是直角三角形.

2)如圖所示,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P,給出如下定義記點Px軸的距離為,y軸的距離為,則稱為點P的最大距離,則稱為點P的最大距離

例如P, 到到x軸的距離為4y軸的距離為3,因為34,所以點P的最大距離為.

1①點A2, 的最大距離為________;

②若點B, 的最大距離為的值為________;

2若點C在直線且點C的最大距離為,求點C的坐標;

3若⊙O存在M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在樓房MN前有兩棵樹與樓房在同一直線上,且垂直于地面,為了測量樹AB、CD的高度,小明爬到樓房頂部M處,光線恰好可以經(jīng)過樹CD的頂站C點到達樹AB的底部B點,俯角為45°,此時小亮測得太陽光線恰好經(jīng)過樹CD的頂部C點到達樓房的底部N點,與地面的夾角為30°,樹CD的影長DN為15米,請求出樹AB、CD的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABMAE⊥BDE,交CDN,連AC

1)求證:ACAN

2)若OM∶OC3∶5,AB5,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個涵洞成拋物線形,它的截面如圖,現(xiàn)測得:當水面寬AB=1.6 m時,涵洞頂點與水面的距離為2.4 m,離開水面1.5 m處是涵洞寬ED.

1)求拋物線的解析式;

2)求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點O,過點ABD的平行線交CD的延長線于點E

求證: ;

,連接OE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)(11)(8) (2)

(3)(3.5)(2.3) -(-2.9 (4)

5)(-7--4++5--9

61+-6.5+3+-1.75+2;

7

813579119799

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在全民讀書月活動中,某校隨機抽樣調(diào)查了一部分學(xué)生本學(xué)期計劃購買課外書的費用情況,根據(jù)圖中的相關(guān)信息,解答下面問題;

1)這次調(diào)查獲取的樣本容量是________;

2)由統(tǒng)計圖可知,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是________;中位數(shù)是________

3)若該校共有1000名學(xué)生,根據(jù)樣本數(shù)據(jù),估計該校本學(xué)期計劃購買課外書的總花費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1) (24)(36) +(+20)

(2)

(3)

(4)

查看答案和解析>>

同步練習(xí)冊答案