22、如圖,在⊙O中,AB為⊙O的弦,C、D是直線AB上兩點(diǎn),且AC=BD,
求證:△OCD為等腰三角形.
分析:此題解法較多,下面以揀兩種常用的解法進(jìn)行說明:
①連接OA、OB,由于OA、OB都是⊙O的半徑,則OA=OB,且∠OAC=∠OBD,進(jìn)而可得∠OAC=∠OBD,然后通過證△OAC≌△OBD得到OC=OD,即△OCD是等腰三角形的結(jié)論.
②過O作AB垂線,設(shè)垂足為M,由垂徑定理可得AM=BM,已知AC=BD,那么CM=DM,即OM垂直平分線段CD,由此證得OC=OD,即△OCD為等腰三角形.
解答:解:證明:(證法一)過點(diǎn)O點(diǎn)作OM⊥AB,垂足為M;
∵OM⊥AB,∴AM=BM,
∵AC=BD,∴CM=DM,
又∵OM⊥AB,∴OC=OD,
∴△OCD為等腰三角形.

(證法二)連接OA,OB;
∵OA=OB,∴∠OAB=∠OBA,
∴△CBO≌△DAO,
∴OC=OD,
∴△OCD為等腰三角形;
(證法三)(以上同證法二)
∴∠CAO=∠DBO,
又∵AC=BD,
∴△CAO≌△DBO,
∴△OCD為等腰三角形.
點(diǎn)評(píng):此題主要考查了垂徑定理、全等三角形的判定和性質(zhì)以及等腰三角形的判定等知識(shí),難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB>AC,E為BC邊的中點(diǎn),AD為∠BAC的平分線,過E作AD的平行線,交AB于F,交CA的延長線于G.
求證:BF=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),且∠BAD=30°,若AD=DE,∠EDC=33°,則∠DAE的度數(shù)為
72
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D是△ABC內(nèi)一點(diǎn),且BD=DC.求證:∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=BC,∠ABC=90°,D是BC的中點(diǎn),且它關(guān)于AC的對(duì)稱點(diǎn)是D′,BD′=
5
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,D點(diǎn)是BC的中點(diǎn),DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),則圖中全等三角形共有
3
3
對(duì).

查看答案和解析>>

同步練習(xí)冊答案