如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.

(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對稱軸向下以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.

(1)y=-x2-2x+3;(2)(,)  (3)當(dāng)t為秒或2秒或3秒或秒時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形

解析試題分析:(1)先由直線AB的解析式為y=x+3,求出它與x軸的交點(diǎn)A、與y軸的交點(diǎn)B的坐標(biāo),再將A、B兩點(diǎn)的坐標(biāo)代入y=-x2+bx+c,運(yùn)用待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,-m2-2m+3),運(yùn)用配方法求出拋物線的對稱軸及頂點(diǎn)D的坐標(biāo),再設(shè)拋物線的對稱軸與x軸交于點(diǎn)G,連接FG,根據(jù)S△AEF=S△AEG+S△AFG-S△EFG=3,列出關(guān)于m的方程,解方程求出m的值,進(jìn)而得出點(diǎn)F的坐標(biāo);
(3)設(shè)P點(diǎn)坐標(biāo)為(-1,n).先由B、C兩點(diǎn)坐標(biāo),運(yùn)用勾股定理求出BC2=10,再分三種情況進(jìn)行討論:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,據(jù)此列出關(guān)于n的方程,求出n的值,再計(jì)算出PD的長度,然后根據(jù)時(shí)間=路程÷速度,即可求出此時(shí)對應(yīng)的t值;②∠BPC=90°,同①可求出對應(yīng)的t值;③∠BCP=90°,同①可求出對應(yīng)的t值.
試題解析:(1)∵y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴當(dāng)y=0時(shí),x=-3,即A點(diǎn)坐標(biāo)為(-3,0),
當(dāng)x=0時(shí),y=3,即B點(diǎn)坐標(biāo)為(0,3),
將A(-3,0),B(0,3)代入y=-x2+bx+c,得
, 解得,
∴拋物線的解析式為y=-x2-2x+3;
(2)如圖1,

設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,-m2-2m+3),則m<0,-m2-2m+3<0.
∵y=-x2-2x+3=-(x+1)2+4,
∴對稱軸為直線x=-1,頂點(diǎn)D的坐標(biāo)為(-1,4),
設(shè)拋物線的對稱軸與x軸交于點(diǎn)G,連接FG,則G(-1,0),AG=2.
∵直線AB的解析式為y=x+3,
∴當(dāng)x=-1時(shí),y=-1+3=2,
∴E點(diǎn)坐標(biāo)為(-1,2).
∵S△AEF=S△AEG+S△AFG-S△EFG=×2×2+×2×(m2+2m-3)-×2×(-1-m)=m2+3m,
∴以A、E、F為頂點(diǎn)的三角形面積為3時(shí),m2+3m=3,
解得:(舍去),
當(dāng)時(shí),-m2-2m+3=-m2-3m+m+3=-3+m+3=m=,∴點(diǎn)F的坐標(biāo)為(,);
(3)設(shè)P點(diǎn)坐標(biāo)為(-1,n).
∵B(0,3),C(1,0),
∴BC2=12+32=10.
分三種情況:①如圖2,如果∠PBC=90°,那么PB2+BC2=PC2,

即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2
化簡整理得6n=16,解得n=
∴P點(diǎn)坐標(biāo)為(-1,),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4-=,
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t1=;
②如圖3,如果∠BPC=90°,那么PB2+PC2=BC2,

即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,
化簡整理得n2-3n+2=0,解得n=2或1,
∴P點(diǎn)坐標(biāo)為(-1,2)或(-1,1),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4-2=2或PD=4-1=3,
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t2=2,t3=3;
③如圖4,如果∠BCP=90°,那么BC2+PC2=PB2,

即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2
化簡整理得6n=-4,解得n=-
∴P點(diǎn)坐標(biāo)為(-1,-),
∵頂點(diǎn)D的坐標(biāo)為(-1,4),
∴PD=4+=
∵點(diǎn)P的速度為每秒1個(gè)單位長度,
∴t4=
綜上可知,當(dāng)t為秒或2秒或3秒或秒時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形.
考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是       三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點(diǎn)O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點(diǎn)E為圓心,r為半徑的圓與線段AD只有一個(gè)公共點(diǎn),求出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點(diǎn)C的坐標(biāo)為(0,-),點(diǎn)M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點(diǎn)P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)∆BDM為直角三角形時(shí),請直接寫出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

△ABC是銳角三角形,BC=6,面積為12.點(diǎn)P在AB上,點(diǎn)Q在AC上.如圖9-33,正方形PQRS(RS與A在PQ的異側(cè))的邊長為x,正方形PQRS與△ABC的公共部分的面積為y.

(1)當(dāng)RS落在BC上時(shí),求x;
(2)當(dāng)RS不落在BC上時(shí),求y與x的函數(shù)關(guān)系式;
(3)求公共部分面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx-3a經(jīng)過點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對稱軸MN對稱.

(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=-x+4x+5交x軸于A、B(以A左B右)兩點(diǎn),交y軸于點(diǎn)C.

(1)求直線BC的解析式;
(2)點(diǎn)P為拋物線第一象限函數(shù)圖象上一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接AP,拋物線上是否存在這樣的點(diǎn)P,使得線段PA被BC平分,如果不存在,請說明理由;如果存在,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0,3),直線l是拋物線的對稱軸.

(1)求該拋物線的解析式.
(2)若過點(diǎn)A(﹣1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點(diǎn)P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在平面直角坐標(biāo)系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求點(diǎn)C的坐標(biāo)及梯形ABCO的面積;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與運(yùn)動(dòng)時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)以O(shè),P,Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=x2+mx+n交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(﹣3,0).

(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)].

查看答案和解析>>

同步練習(xí)冊答案