如圖,已知在平面直角坐標系中,四邊形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,動點P從點O以每秒2個單位的速度向點A運動,動點Q也同時從點B沿B→C→O的線路以每秒1個單位的速度向點O運動,當點P到達A點時,點Q也隨之停止,設(shè)點P,Q運動的時間為t(秒).
(1)求點C的坐標及梯形ABCO的面積;
(2)當點Q在CO邊上運動時,求△OPQ的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)以O(shè),P,Q為頂點的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值;若不能,請說明理由.
(1) (2)() (3)當t=1或t=2時,△OPQ為直角三角形
解析試題分析:(1)作CM⊥OA于點M,知CM,由∠AOC=60°易求BM=1,求出C點坐標;由B點坐標可求BC的長,從而梯形面積可求;
(2)用含有t的代數(shù)式分別表示△OPQ的高和底,求出△OPQ的的面積即可表示出S與運動時間t的函數(shù)關(guān)系式;
(3)分點Q分別在邊BC、OC、OA上運動時進行討論,即可求出t的值.
試題解析:(1)作CM⊥OA于點M,
∵∠AOC=60°,∴∠OCM=30°,
∵B(3,),BC∥AO,∴CM,
設(shè)OM=,則OC=,∴
解得,∴OM=1,OC=2,
∴C(1,),
∵B(3,),∴BC=2,
∵A(6,0),∴OA=6,
∴,
(2)如圖1,當動點Q運動到OC邊時,OQ=,
作QG⊥OP,∴∠OQG=30°,
∴,∴,
又∵OP=2t,
∴
();
(3)根據(jù)題意得出:,
當時,Q在BC邊上運動,延長BC交y軸于點D,
此時OP=2t,,,
∵∠POQ<∠POC=60°,
∴若△OPQ為直角三角形,只能是∠OPQ=90°或∠OQP=90°,
若∠OPQ=90°,如圖2,則∠PQD=90°,
∴四邊形PQDO為矩形,
∴OP=QD,∴2t=3-t,
解得t=1,
若∠OQP=90°,如圖3,則OQ2+PQ2=PO2,
即,
解得:t1=t2=2,
當時,Q在OC邊上運動,
若∠OQP=90°,
∵∠POQ=60°,∴∠OPQ=30°,
∴,
若∠OPQ=90°,同理:,
而此時OP=2t>4,OQ<OC=2,
∴,,
故當Q在OC邊上運動時,△OPQ不可能為直角三角形,
綜上所述,當t=1或t=2時,△OPQ為直角三角形。
考點: 1.二次函數(shù);2.直角三角形的判定.
科目:初中數(shù)學 來源: 題型:解答題
如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點,以A、E、F為頂點的三角形面積為3,求點F的坐標;
(3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設(shè)運動的時間為t秒,當t為何值時,以P、B、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元.則每個月少賣10件。設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1) 求y與x的函數(shù)關(guān)系式
(2) 每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3) 若每個月的利潤不低于2160元,售價應(yīng)在什么范圍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標.
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點M,過M作MG軸于點G,使以A、M、G三點為頂點的三角形與PCA相似.若存在,請求出M點的坐標;否則,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知OA=12cm,OB=6cm,點P從O點開始沿OA邊向點A以1cm/s的速度移動:點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(),那么:
(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當△POQ的面積最大時,△ POQ沿直線PQ翻折后得到△PCQ,試判斷點C是否落在直線AB上,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,A點在原點的左則,B點的坐標為(3,0),與y軸交于C(0,―3)點,點P是直線BC下方的拋物線上一動點。
⑴求這個二次函數(shù)的表達式;
⑵連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由;
⑶當點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某跳水運動員進行10m跳臺跳水的訓(xùn)練時,身體(看成一點)在空中的運動路線是如圖所示坐標系下經(jīng)過原點O的一條拋物線(圖中標出的數(shù)據(jù)為己知條件).在跳某個規(guī)定動作時,正確情況下,該運動員在空中的最高處距水面m,入水處與池邊的距離為4m, 同時,運動員在距水面高度為5m以前,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤.
(l)求這條拋物線的解析式;
(2)在某次試跳中,測得運動員在空中的運動路線是(1)中的拋物線,且運動員在空中調(diào)整好入水姿勢時,距池邊的水平距離為,問:此次跳水會不會失誤?通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線過x軸上兩點A(9,0),C(-3,0),且與y軸交于點B(0,-12).
(1)求拋物線的解析式;
(2)若動點P從點A出發(fā),以每秒2個單位沿射線AC方向運動;同時,點Q從點B出發(fā),以每秒1個單位沿射線BA方向運動,當點P到達點C處時,兩點同時停止運動.問當t為何值時,△APQ∽△AOB?
(3)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
①是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.
②當點M運動到何處時,四邊形CBNA的面積最大?求出此時點M的坐標及四邊形CBNA面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com