如圖(1),∆ABC為等邊三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,點D在邊BC上運動,邊DF始終經(jīng)過點A,DE交AC于點G.
(1)求證:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)設(shè)BD=x,若CG=,求x的值;
(3)如圖2,當D運動到BC中點時,點P為線段AD上一動點,連接CP,將線段CP繞著點C逆時針旋轉(zhuǎn)60°得到CP' ,連接BP',DP',
①求∠CBP'的度數(shù);②求DP'的最小值.
(1)①詳見解析;②詳見解析;(2)x1=1,x2=5;(3) ①∠CBP'="30°" ; ②DP′=1.5.
解析試題分析:(1) ①利用三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,即可求證. ②利用兩角相等的三角形相似.(2)利用前面所得的三角形相似,由對應(yīng)邊成比例,可求得x的值.(3)①根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的圖形對應(yīng)線段、對應(yīng)角相等,可證得△ACP≌△BCP′,從而∠CAP=∠CBP′,然后根據(jù)等腰三角形的“三線合一”性質(zhì),得到∠CBP′=30°. ②根據(jù)“垂線段最短”這一定理,當∠BP′D=90°時,DP′最短.
試題解析:(1)①∵∠ADC=∠B+∠BAD, ∠ADC=∠ADG+∠CDG
∴∠B+∠BAD=∠ADG+∠CDG
∵三角形ABC是等邊三角形
∴∠B=∠C=60°
∵∠ADG=60°
∴∠BAD=∠CDG
②由①知∠BAD=∠CDG
∵∠B=∠C
∴△ABD∽△DCG
(2)由(1)知△ABD∽△DCG,所以AB:CD=BD:CG,CD=6-x,AB=6,CG=,BD=x,代入可求得:x=1或5.
(3) ①由旋轉(zhuǎn)知∠PCP′=60°,CP=CP′,
∵△ABC是等邊三角形
∴AC="BC," ∠ACB=60°
∴∠ACP=∠BCP′
∴△ACP≌△BCP′
∠CBP′=∠CAD=30°
②根據(jù)“垂線段最短”可知,當DP′⊥BP′時,DP′最短,此時,由于∠CBP′=30°,所以DP′=BD=1.5.
考點:1、相似三角形的判定和性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、全等三角形的判定和性質(zhì)
科目:初中數(shù)學 來源: 題型:解答題
如圖①,已知線段AB=8,以AB為直徑作半圓O,再以O(shè)A為直徑作半圓C,P是半圓C上的一個動點(P與點A,O不重合),AP的延長線交半圓O于點D。
(1)判斷線段AP與PD的大小關(guān)系,并說明理由;
(2)連接PC,當∠ACP=600時,求弧AD的長;
(3)過點D作DE⊥AB,垂足為E(如圖②),設(shè)AP=x,OE=y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.
求證:(1)點F是DC上一點,連接EF,交AC于點O(如圖1),△AOE∽△COF;
(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖1,在正方形ABCD中,AB=1,點E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點F,設(shè)BE,CF.
圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點記作O,直線OF交線段CE于點G,求證:;
圖2
(3)在(2)的條件下,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,∴P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設(shè)線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關(guān)系式;
②當x=6時,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形ABCD中,AB=12cm,AD=16cm,動點E、F分別從A點、C點同時出發(fā),均以2cm/s的速度分別沿AD向D點和沿CB向B點運動。
(1)經(jīng)過幾秒首次可使EF⊥AC?
(2)若EF⊥AC,在線段AC上,是否存在一點P,使?若存在,請說明P點的位置,并予以證明;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com