如圖,矩形ABCD中,AB=12cm,AD=16cm,動(dòng)點(diǎn)E、F分別從A點(diǎn)、C點(diǎn)同時(shí)出發(fā),均以2cm/s的速度分別沿AD向D點(diǎn)和沿CB向B點(diǎn)運(yùn)動(dòng)。

(1)經(jīng)過(guò)幾秒首次可使EF⊥AC?
(2)若EF⊥AC,在線段AC上,是否存在一點(diǎn)P,使?若存在,請(qǐng)說(shuō)明P點(diǎn)的位置,并予以證明;若不存在,請(qǐng)說(shuō)明理由。

解:(1)設(shè)經(jīng)過(guò)x秒首次可使EF⊥AC,AC與EF相交于點(diǎn)O,

則AE=2x,CF=2x。
∵四邊形ABCD是矩形,∴∠EAO=∠FCO,∠AOE=∠COF。
∴△AOE≌△COF(AAS)!郃O=OC,OE=OF。
∵AB=12cm,AD=16cm,
∴根據(jù)勾股定理得AC=20cm。∴OC=10cm。
在Rt△OFC中,,∴。
過(guò)點(diǎn)E作EF⊥BC交BC于點(diǎn)H,
在Rt△EFN中,,∴。
解得。
∴經(jīng)過(guò)秒首次可使EF⊥AC。
(2)過(guò)點(diǎn)E作EP⊥AD交AC于點(diǎn)P,則P就是所求的點(diǎn)。證明如下:
由作法,∠AEP=900,
又EF⊥AC,即∠AOE=900!唷鰽EP∽△AOE。
,即。
。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問(wèn):是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖(1),∆ABC為等邊三角形,AB=6,在直角三角板DEF中∠F=90°,∠FDE=60°,點(diǎn)D在邊BC上運(yùn)動(dòng),邊DF始終經(jīng)過(guò)點(diǎn)A,DE交AC于點(diǎn)G.

(1)求證:①∠BAD=∠CDG
②∆ABD∽∆DCG
(2)設(shè)BD=x,若CG=,求x的值;
(3)如圖2,當(dāng)D運(yùn)動(dòng)到BC中點(diǎn)時(shí),點(diǎn)P為線段AD上一動(dòng)點(diǎn),連接CP,將線段CP繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到CP' ,連接BP',DP',

①求∠CBP'的度數(shù);②求DP'的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P為線段AB的黃金分割點(diǎn)(AP>BP),且AB=2,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立。

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G。
求證:BD⊥CF。
(3)在(2)小題的條件下, AC與BG的交點(diǎn)為M, 當(dāng)AB=4,AD=時(shí),求線段CM的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

請(qǐng)?jiān)趫D中補(bǔ)全坐標(biāo)系及缺失的部分,并在橫線上寫恰當(dāng)?shù)膬?nèi)容。圖中各點(diǎn)坐標(biāo)如下:A(1,0),B(6,0),C(1,3),D(6,2)。線段AB上有一點(diǎn)M,使△ACM∽△BDM,且相似比不等于1。求出點(diǎn)M的坐標(biāo)并證明你的結(jié)論。

解:M(      
證明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=   度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(   ),∠BDM=∠BMD(同理),
∴∠ACM= (180°-   ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM與△BDM中,
∴△ACM∽△BDM(如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了測(cè)量旗桿AB的高度.甲同學(xué)畫出了示意圖1,并把測(cè)量結(jié)果記錄如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同學(xué)畫出了示意圖2,并把測(cè)量結(jié)果記錄如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.

(1)請(qǐng)你幫助甲同學(xué)計(jì)算旗桿AB的高度(用含a、b、c的式子表示);
(2)請(qǐng)你幫助乙同學(xué)計(jì)算旗桿AB的高度(用含m、n、α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是(  )

A.圓錐 B.圓柱 C.球 D.三棱柱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

下圖是某幾何體的三視圖,根據(jù)圖中數(shù)據(jù),求得該幾何體的體積為(  )

A.60π B.70π C.90π D.160π

查看答案和解析>>

同步練習(xí)冊(cè)答案