【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個(gè)矩形花草園,其中一邊靠墻,另外三邊周長為米的籬笆圍成.已知墻長為米(如圖所示),設(shè)這個(gè)花草園垂直于墻的一邊長為米.
若花草園的面積為平方米,求;
若平行于墻的一邊長不小于米,這個(gè)花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
當(dāng)這個(gè)花草園的面積不小于平方米時(shí),直接寫出的取值范圍.
【答案】(1)x=10;(2) 當(dāng)時(shí),;(3)
【解析】
(1)根據(jù)題意得方程求解即可;
(2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y=x(30-2x)=-2x2+30x,根據(jù)二次函數(shù)的性質(zhì)求解即可;
(3)由題意得不等式,即可得到結(jié)論.
根據(jù)題意知平行于墻的一邊的長為米,
則有:,
解得:或,
∵,
∴,
故;
設(shè)苗圃園的面積為,
∴,
∵,
∴苗圃園的面積有最大值,
∵,
解得:,
∴,
∴當(dāng)時(shí),即平行于墻的一邊長米,平方米;
當(dāng)時(shí),;
由題意得,
解得:或,
又∵,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣++2與x軸相交于A,B兩點(diǎn),(點(diǎn)A在B點(diǎn)左側(cè))與y軸交于點(diǎn)C.
(1)求A,B兩點(diǎn)坐標(biāo).
(2)連結(jié)AC,若點(diǎn)P在第一象限的拋物線上,P的橫坐標(biāo)為t,四邊形ABPC的面積為S.試用含t的式子表示S,并求t為何值時(shí),S最大.
(3)在(2)的基礎(chǔ)上,在整條拋物線上和對稱軸上是否分別存在點(diǎn)G和點(diǎn)H,使以A,G,H,P四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,請直接寫出G,H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2019年11月21日---11月27日最高氣溫走勢圖,則下列說法不正確的是( )
A.21日---22日的最高氣溫呈上升趨勢
B.這7天中,23日的最高氣溫高于其他6天的的最高氣溫
C.23---25日的最高氣溫呈下降趨勢
D.相鄰兩天中,24日---25日的最高氣溫變化最大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,D,E分別在AB,AC上,AD=AE,將△ADE繞點(diǎn)A逆時(shí)針任意旋轉(zhuǎn).
(1)發(fā)現(xiàn):如圖2,連結(jié)BD,CE,若∠BAC=60°,D點(diǎn)恰在線段BE上,則∠BEC= °;
(2)探究:如圖3,連結(jié)BD,CE,并交于點(diǎn)F,求證:∠BFC=∠BAC;
(3)拓展:如圖4,若∠BAC=90°,AB=5,AD=2,連結(jié)CD,BE,請直接寫出四邊形BCDE的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗(yàn)田,要使試驗(yàn)田的面積是570平方米,問道路應(yīng)該多寬?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD的對角線交于點(diǎn)O,點(diǎn)E在邊BC的延長線上,且OE=OB,連接DE.
(1)求證:△BDE是直角三角形;
(2)如果OE⊥CD,試判斷△BDE與△DCE是否相似,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=kx2+2kx﹣3k(k≠0),的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OC=OA.
(1)點(diǎn)A坐標(biāo)為 ,點(diǎn)B坐標(biāo)為 ,拋物線的解析式為 ;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的一個(gè)動點(diǎn),連接AP、CP,當(dāng)四邊形ABCP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q(0,m)是y軸上的動點(diǎn),連接AQ、BQ,
①當(dāng)∠AQB是鈍角時(shí),求m的取值范圍;
②當(dāng)∠AQB=60°時(shí),則m= .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com