【題目】如圖,將三角形ABC沿射線BA方向平移到三角形A'B'C'的位置,連接AC'.
(1)AA'與CC'的位置關(guān)系為 ;
(2)求證:∠A'+∠CAC'+∠AC'C=180°;
(3)設(shè)∠ACB=y,試探索∠CAC'與x,y之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1平行;(2)證明見解析;(3)∠CAC′=x+y.證明見解析.
【解析】
(1)由平移的性質(zhì)直接得到答案,
(2)先證明四邊形是平行四邊形,利用平行四邊形的性質(zhì)及三角形內(nèi)角和定理可得答案,
(3)過點A作AD∥,交于點D,利用平行線的性質(zhì)及角的和差可得答案.
解:(1)由平移的性質(zhì)得:
故答案為:平行.
(2)證明:根據(jù)平移性質(zhì)可知∥AC,∥,
∴四邊形是平行四邊形,
∴∠A'+∠CAC'+∠AC'C=180°.
(3)結(jié)論:
證明:過點A作AD∥,交于點D.
根據(jù)平移性質(zhì)可知∥,∴∥AD∥,
∴
∴.
即
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海開放城市A接到臺風(fēng)警報,在該市正南方向100km的B處有一臺風(fēng)中心,沿BC方向以20km/h的速度向D移動,已知城市A到BC的距離AD=60km,那么臺風(fēng)中心經(jīng)過多長時間從B點移到D點?如果在距臺風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺風(fēng)的破壞的危險,正在D點休閑的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可脫離危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn),求證:四邊形AFCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OM⊥AB.
(1)∠AOC的鄰補角為 (寫出一個即可);
(2)若∠1=∠2,判斷ON與CD的位置關(guān)系,并說明理由;
(3)若∠1=∠BOC,求∠MOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點C關(guān)于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c表示△ABC的三邊長,且滿足+|a-12|+(b-13)2=0,則△ABC是( )
A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強學(xué)生體質(zhì),全面實施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:
(1)本次被調(diào)查的學(xué)生有名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連結(jié)OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com